Inhibition of protein-protein interactions with low molecular weight compounds.

Curr Trends Med Chem

Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 Penn Street, Baltimore, MD, 21201.

Published: January 2008

AI Article Synopsis

  • The text provides an overview of challenges in creating low molecular weight inhibitors targeting protein-protein interactions, focusing on their design and development.
  • Key areas include understanding protein-protein interfaces, techniques for characterizing these interfaces, and how this information aids in discovering and designing effective ligands.
  • Specific case studies of inhibitors for proteins like p56lck kinase, ERK2, and S100B demonstrate promising drug-like properties, suggesting their potential as therapeutic agents.

Article Abstract

An overview of issues associated with the design and development of low molecular weight inhibitors of protein-protein interactions is presented. Areas discussed include information on the nature of protein-protein interfaces, methods to characterize those interfaces and methods by which that information is applied towards ligand identification and design. Specific examples of the strategy for the identification of inhibitors of protein-protein interactions involving the proteins p56lck kinase, ERK2 and the calcium-binding protein S100B are presented. Physical characterization of the inhibitors identified in those studies shows them to have drug-like and lead-like properties, indicating their potential to be developed into therapeutic agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3173769PMC

Publication Analysis

Top Keywords

protein-protein interactions
12
low molecular
8
molecular weight
8
inhibitors protein-protein
8
interfaces methods
8
inhibition protein-protein
4
interactions low
4
weight compounds
4
compounds overview
4
overview issues
4

Similar Publications

Predicting protein-protein interactions (PPIs) is crucial for advancing drug discovery. Despite the proposal of numerous advanced computational methods, these approaches often suffer from poor usability for biologists and lack generalization. In this study, we designed a deep learning model based on a coattention mechanism that was capable of both PPI and site prediction and used this model as the foundation for PPI-CoAttNet, a user-friendly, multifunctional web server for PPI prediction.

View Article and Find Full Text PDF

Autophagy, a recycling process in eukaryotes, contributes to tumor growth and metastasis by alleviating cellular stress and facilitating survival and chemoresistance. The development of small molecules that selectively inhibit this pathway has proven challenging and is required to determine if autophagy inhibition can be harnessed as an effective therapeutic strategy in cancer. Compound 19 was previously identified as a selective autophagy inhibitor that targets the ATG14L-Beclin1 protein-protein interaction, which regulates the formation, localization, and function of VPS34 Complex I to initiate autophagy.

View Article and Find Full Text PDF

The apoptosome, a critical protein complex in apoptosis regulation, relies on intricate interactions between its components, particularly the proteins containing the Caspase Activation and Recruitment Domain (CARD). This work presents a thorough computational analysis of the stability and specificity of CARD-CARD interactions within the apoptosome. Departing from available crystal structures, we identify important residues for the interaction between the CARD domains of Apaf-1 and Caspase-9.

View Article and Find Full Text PDF

Jaranol alleviates cognitive impairment in db/db mice through the PI3K/AKT pathway.

Metab Brain Dis

January 2025

Xuzhou Engineering Research Center of Medical Genetics and Transformation, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.

The widely used Radix Astragali (RA) has significant therapeutic effects on cognitive impairment (CI) caused by type 2 diabetes (T2DM). However, the effective active ingredients and the precise mechanism underly RA alleviation of T2DM-induced CI still require further study. In this study, we aim to elucidate whether and how jaranol, a key effective active ingredient in RA, influences CI in db/db mice.

View Article and Find Full Text PDF

, a medicinal plant traditionally used in Southeast Asia, exerts protective effects against various inflammatory diseases, primarily due to its rich alkaloid content. Despite substantial evidence supporting its anti-inflammatory properties, the biological activities of are unclear. This study aimed to elucidate anticolitis mechanisms of alkaloids (CFAs) using an integrative approach of network pharmacology and molecular docking analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!