Distribution of dendritic cells in normal human salivary glands.

Acta Histochem Cytochem

Division of Pediatric Dentistry, Department of Craniofacial Sciences, University of Connecticut School of Dental Medicine, Farmington, CT 06030, USA.

Published: August 2011

AI Article Synopsis

  • Dendritic cells (DC) are present in significant numbers in normal human salivary glands, specifically in the parotid and submandibular glands.
  • These cells exhibit a unique distribution in the ductal and acinar epithelium, where they can extend processes between epithelial cells, indicating active engagement with the immune response.
  • The study utilized light and transmission electron microscopy to characterize DC morphology and distribution, suggesting their potential role in recognizing foreign antigens and maintaining immune tolerance in the salivary glands.

Article Abstract

Dendritic cells (DC) are believed to contribute to development of autoimmune sialadenitis, but little is known about their distribution in normal salivary glands. In this study, DC were identified and their distribution was determined in normal human parotid and submandibular glands. For light microscopy, salivary gland sections were stained with H&E or immunocytochemically using antibodies to DC markers. Transmission electron microscopy (TEM) was used to evaluate the ultrastructural characteristics of DC. In H&E sections, elongated, irregularly shaped nuclei were occasionally seen in the striated and excretory duct epithelium. Immunolabeling with anti-HLA-DR, anti-CD11c and anti-S100 revealed DC with numerous processes extending between ductal epithelial cells, often close to the lumen. Morphometric analyses indicated that HLA-DR-positive DC occupied approximately 4-11% of the duct wall volume. Similar reactive cells were present in acini, intercalated ducts and interstitial tissues. TEM observations revealed cells with indented nuclei containing dense chromatin, pale cytoplasm with few organelles, and lacking junctional attachments to adjacent cells. These results indicate that DC are abundant constituents of normal human salivary glands. Their location within ductal and acinar epithelium suggests a role in responding to foreign antigens and/or maintaining immunological tolerance to salivary proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3168762PMC
http://dx.doi.org/10.1267/ahc.11010DOI Listing

Publication Analysis

Top Keywords

normal human
12
salivary glands
12
dendritic cells
8
human salivary
8
cells
6
salivary
5
distribution dendritic
4
normal
4
cells normal
4
glands
4

Similar Publications

Rural and remote health care: the case for spatial justice.

Rural Remote Health

January 2025

School of Health Sciences, Western Sydney University, Campbelltown, NSW 2560, Australia.

Almost universally, people living in rural and remote places die younger, poorer, and sicker than urban-dwelling citizens of the same country. Despite clear need, health services are commonly less available, and more costly and challenging to access, for rural and remote people. Rural geography is commonly cited as a reason for these disparities, that is, rural people are said to live in places too distant, too underpopulated, and too difficult to access.

View Article and Find Full Text PDF

Benzo (a) pyrene produced by food during high-temperature process enters the body through ingestion, which causes food safety issues to the human body. In order to alleviate the harm of foodborne benzo (a) pyrene to human health, a strain that can degrade benzo (a) pyrene was screened from Kefir, a traditional fermented product in Xinjiang. Bacillus cereus M72-4 is a Gram-positive bacteria sourced from Xinjiang traditional fermented product Kefir, under Benzo(a)pyrene stress conditions, there was 69.

View Article and Find Full Text PDF

Delayed fracture healing (DFH), a common complication of post-fracture surgery, exhibits an incompletely understood pathogenesis. The present study endeavors to investigate the roles and underlying mechanisms of miR-656-3p and Bone Morphogenetic Protein-2 (BMP-2) in DFH. It was recruited 94 patients with normal fracture healing (NFH) and 88 patients with DFH of the femoral neck.

View Article and Find Full Text PDF

Advances in RNA editing in hematopoiesis and associated malignancies.

Blood

January 2025

State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; Center for Stem Cell Medicine,, Tianjin, China.

Adenosine-to-inosine (A-to-I) RNA editing is a prevalent RNA modification essential for cell survival. The process is catalyzed by the Adenosine Deaminase Acting on RNA (ADAR) enzyme family that converts adenosines in double-stranded RNAs (dsRNAs) into inosines, which are read as guanosines during translation. Deep sequencing has helped to reveal that A-to-I editing occurs across various types of RNAs to affect their functions.

View Article and Find Full Text PDF

Adaptation to existence outside the womb is a key event in the life of a mammal. The absence of macrophages in rats with a homozygous mutation in the colony-stimulating factor 1 receptor (Csf1r) gene (Csf1rko) severely compromises pre-weaning somatic growth and maturation of organ function. Transfer of wild-type bone marrow cells (BMT) at weaning rescues tissue macrophage populations permitting normal development and long-term survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!