Tumour-initiating cells (TICs) are rare cancer cells isolated from tumours of different origins including high-grade tumours that sustain neoplasic progression and development of metastatic disease. They harbour deregulated stem cells pathways and exhibit an unchecked ability to self-renew, a property essential for tumour progression. Among the essential factors maintaining embryonic stem (ES) cells properties, OCT-4 (also known as POU5F1) has been detected in tumours of different origins. Although ectopic expression results in dysplasic growth restricted to epithelial tissues, overexpression expands the proportion of immature cells in teratomas. However, OCT-4-expressing cells have not been purified from spontaneously occurring tumours, thus information concerning their properties is rather scant. Here, using p53-/- mice expressing green fluorescent protein and the puromycin resistance gene under the control of the Oct-4 promoter, we show that OCT-4 is expressed in 5% onwards of the undifferentiated tumour cell populations derived from different organs. OCT-4 expression was low as compared with ES cells, but was associated with a 'stemness' signature and expression of the chemokine receptor CXCR4. These cells displayed cancer stem cell features, including increased self-renewal and differentiation ability in vitro and in vivo. They not only formed allografts containing immature bone regions but also disseminated into different organs, including lung, liver and bone. Experiments based on RNA interference revealed that Oct-4 expression drives both their engraftment and metastasis formation. This work points out the crucial contribution of Oct-4-expressing TICs in the hierarchical organization of the malignant potential, leading to metastasis formation. Consequently, it provides an appropriate model to develop novel therapies aiming to strike down TICs by targeting self-renewal genes, therefore efficient to reduce tumour growth and metastatic disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/onc.2011.421 | DOI Listing |
Photochem Photobiol Sci
January 2025
Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions.
View Article and Find Full Text PDFBioDrugs
January 2025
Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France.
Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.
View Article and Find Full Text PDFDig Dis Sci
January 2025
Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.
Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.
View Article and Find Full Text PDFBiomol NMR Assign
January 2025
High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.
PhoCl is a photocleavable protein engineered from a green-to-red photoconvertible fluorescent protein by circular permutation, and has been used in various optogenetic applications including precise control of protein localization and activity in cells. Upon violet light illumination, PhoCl undergoes a β-elimination reaction to be cleaved at the chromophore, resulting in spontaneous dissociation into a large empty barrel and a small C-terminal peptide. However, the structural determinants and the mechanism of the PhoCl photocleavage remain elusive, hindering the further development of more robust photocleavable optogenetic tools.
View Article and Find Full Text PDFClin Rheumatol
January 2025
Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China.
Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!