Hepcidin has been found to be the key regulator of iron metabolism that leads to hypoferremia during inflammation. Recent work has shown that equine hepcidin is predominantly expressed in the liver of horses. In this study, hepcidin gene expression was determined in the liver and bone marrow of six healthy horses after iv infusion of Escherichia coli O55:B5 LPS. The IL-6 gene expression was also determined in liver and bone marrow samples. Clinical and laboratory evaluations were measured at multiple time points between 0 and 240 h post-LPS infusion (PI). Liver and bone marrow biopsies were taken immediately before (baseline) and at 6 and 18 h PI. In response to endotoxin infusion, all horses showed characteristic clinical signs of endotoxemia. Plasma iron concentration was decreased significantly from the pre-infusion level at 8 h PI. Hypoferremia peak was observed at 12 h and returned to normal levels at 30 h PI. Relative real-time RT-PCR analysis showed that liver hepcidin and IL-6 mRNA expression was up-regulated at 6 h PI. Bone marrow hepcidin relative expression was not influenced by LPS infusion. In another experiment, equine monocyte cultures were stimulated with LPS (1 µg/ml). Monocyte hepcidin and IL-6 gene expression was significantly induced after 2 h of LPS stimulus and returned to baseline levels thereafter. The present study describes that, in horses, LPS infusion up-regulates hepatic hepcidin mRNA expression resulting in early observed hypoferremia and suggests that hepcidin may act as an acute-phase protein in horses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1753425911420181 | DOI Listing |
Genet Test Mol Biomarkers
January 2025
Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran.
Fanconi anemia (FA) is a rare genetic disorder that affects multiple systems in the body and is the most prevalent congenital syndrome, leading to bone marrow failure. Twenty-two genes have been identified as contributors to the disease. Significant advancements have been made in the past 2 decades in understanding the genetic and pathophysiological processes involved.
View Article and Find Full Text PDFSickle cell disease (SCD) is the most common genetic disease in the world and a societal challenge. SCD is characterized by multi-organ injury related to intravascular hemolysis. To understand tissue-specific responses to intravascular hemolysis and exposure to heme, we present a transcriptomic atlas in the primary target organs of HbSS vs HbAA transgenic SCD mice.
View Article and Find Full Text PDFAlthough iron deficiency anemia is common, interpreting iron laboratory test results can be challenging in patients with comorbidities. We aimed to study the accuracy of common iron biomarkers compared with bone marrow iron staining in a large retrospective dataset of hematological patients. We collected from 6610 patients (median age 66 years) results of iron staining, with their concurrent ferritin, transferrin saturation, soluble transferrin receptor, transferrin, hemoglobin, and mean red blood cell volume results from Helsinki University Hospital electronic health records.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Mitochondrial electron transport chain (ETC) function modulates macrophage biology; however, mechanisms underlying mitochondria ETC control of macrophage immune responses are not fully understood. Here, we report that mutant mice with mitochondria ETC complex III (CIII)-deficient macrophages exhibit increased susceptibility to influenza A virus (IAV) and LPS-induced endotoxic shock. Cultured bone marrow-derived macrophages (BMDMs) isolated from these mitochondria CIII-deficient mice released less IL-10 than controls following TLR3 or TLR4 stimulation.
View Article and Find Full Text PDFSci Transl Med
January 2025
Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA.
Long-term, immunosuppression-free allograft survival has been induced in human and nonhuman primate (NHP) kidney recipients after nonmyeloablative conditioning and donor bone marrow transplantation (DBMT), resulting in transient mixed hematopoietic chimerism. However, the same strategy has consistently failed in NHP heart transplant recipients. Here, we investigated whether long-term heart allograft survival could be achieved by cotransplanting kidneys from the same donor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!