Chemical manipulations of the implant surface produce a bactericidal feature to prevent infections around dental implants. Despite the successful use of bismuth against mucosal and dermis infections, the antibacterial effect of bismuth in the oral cavity remains under investigation. The aim of this study was to evaluate the antibacterial activities of bismuth compounds against Actinobacillus actinomycetemcomitans, Staphylococcus mutans, and methicillin-resistant Staphylococcus aureus (MRSA), and to investigate the antimicrobial effects of bismuth doped micro-arc oxidation (MAO) titanium via an agar diffusion test. Cell viability, alkaline phosphatase activity, and mineralization level of MG63 osteoblast-like cells seeded on the coatings were evaluated at 1, 7, and 14 days. The results demonstrate that bismuth nitrate possess superior antibacterial activity when compared with bismuth acetate, bismuth subgallate, and silver nitrate. The bismuth doped MAO coating (contained 6.2 atomic percentage bismuth) had good biological affinities to the MG63 cells and showed a higher antibacterial efficacy against Actinobacillus actinomycetemcomitans and MRSA, where the reduction rates of colony numbers is higher than that of the control group by 1.5 and 1.9 times, respectively. These in vitro evaluations demonstrate that titanium implants with bismuth on the surface may be useful for better infection control.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0885328211414942DOI Listing

Publication Analysis

Top Keywords

bismuth doped
12
bismuth
11
antibacterial activity
8
doped micro-arc
8
actinobacillus actinomycetemcomitans
8
vitro antibacterial
4
activity cytocompatibility
4
cytocompatibility bismuth
4
micro-arc oxidized
4
oxidized titanium
4

Similar Publications

Topology is being widely adopted to understand and to categorize quantum matter in modern physics. The nexus of topology orders, which engenders distinct quantum phases with benefits to both fundamental research and practical applications for future quantum devices, can be driven by topological phase transition through modulating intrinsic or extrinsic ordering parameters. The conjoined topology, however, is still elusive in experiments due to the lack of suitable material platforms.

View Article and Find Full Text PDF

Achieving high-crystalline-quality, large-size iron garnet magneto-optic (MO) films on silicon substrates remains a critical challenge for CMOS-compatible on-chip non-reciprocal devices like isolators and circulators. In this study, we explored ion slicing on commercial yttrium iron garnet (YIG) crystals, bismuth-doped iron garnet (BIG), and newly developed YIG ceramics. After He ion implantation, wafer bonding and annealing, the BIG film on silicon was successfully fabricated, but its thickness and crystalline phase deviated from expectations.

View Article and Find Full Text PDF

The study of gain clamping in broadband bismuth-doped fiber amplifiers (BDFA) not only helps to solve the gain instability problem due to the variation of the number of optical multiplexing channels but also is an effective way to extend the amplifier's operating bandwidth to improve the communication capacity. In this paper, we illustrate the advantages of linear cavity gain clamping through simulation. Using simulation to guide the experiments, we propose a BDFA with tunable linear-cavity gain clamping and incorporate a variable optical attenuator (VOA) in the linear cavity to enhance the flexibility of gain control.

View Article and Find Full Text PDF

In this work, the conventional melt quenching approach is used to synthesize the Pr doped NaF-BiO-BO-SiO (NBBS) glasses. The influence of Pr ions on their spectroscopic and structural characteristics in glass network is investigated. The amorphous nature of the samples has been amply verified by X-ray diffraction patterns.

View Article and Find Full Text PDF

BiS/BiO(OH) nanorods with internal electric field throughout the entire bulk phase as photoelectrochemical sensing platforms for CYFRA21-1 immunoassay.

Anal Chim Acta

February 2025

Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, 250022, Jinan, PR China; Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Republic of Korea. Electronic address:

Photoelectrochemical (PEC) immunosensors are highly promising tools for monitoring biochemical molecules. Constructing high-performance heterojunctions is a general method to improve the sensitivity of PEC immunosensors. The internal electric field (IEF) formed at the heterojunction interface plays a crucial role in coordinating the separation of photogenerated carriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!