The Burkholderia cepacia complex (Bcc) consists of 17 closely related multidrug resistant bacterial species that are difficult to eradicate. Copper has recently gained attention as an antimicrobial agent because of its inhibitory effects on bacteria, yeast, and viruses. The objective of this study was to evaluate the antibacterial activity of copper surfaces and copper powder against members of the B. cepacia complex. The antibacterial activity of different copper surfaces was evaluated by incubating them with Bcc strain suspensions (5×10(7)cfu/ml). The bacterial survival counts were calculated and the data for various copper surfaces were compared to the data for stainless steel and polyvinylchloride, which were used as control surfaces. The antibacterial activity of copper powder was determined with the diffusimetrical technique and the zone of inhibition was evaluated with paper disks. A single cell gel electrophoresis assay, staining assays, and inductively coupled plasma mass spectroscopy were performed to determine the mechanism responsible for the bactericidal activity. The results showed a significant decrease in the viable bacterial count after exposure to copper surfaces. Moreover, the copper powder produced a large zone of inhibition and there was a significantly higher influx of copper ions into the bacterial cells that were exposed to copper surfaces compared to the controls. The present study demonstrates that metallic copper has an antibacterial effect against Bcc bacteria and that copper adversely affects the bacterial cellular structure, thus resulting in cell death. These findings suggest that copper could be utilized in health care facilities to reduce the bioburden of Bcc species, which may protect susceptible members of the community from bacterial infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiosc.2011.08.017 | DOI Listing |
Talanta
January 2025
International Ph. D Program in Innovative Technology of Biomedical Engineering & Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Research Center for Intelligence Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan. Electronic address:
Nanocomposites that mimic the characteristics of enzymes, commonly as nanozymes, can function as an efficient sensing material with high selectivity towards the targeted biological macromolecule. These nanozymes overcome of the challenges that arise when using natural enzymes as sensing material. This study presents a novel nanozyme, Copper Selenite (CuSeO) nanoparticles mounted on f-CNF, to electrochemically determine a potential cardiovascular biomarker, Glutathione (GSH).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, McGill University, Montréal, Québec H3A 0G4, Canada.
Metal powders are crucial precursors for manufacturing surfaces through thermal spraying, cold spraying, and 3D printing methods. However, surface oxidation of these precursors poses a challenge to the coherence of the metallic materials during manufacturing processes. Herein, we introduce a method for surface modification of copper powder with N-heterocyclic carbenes (NHCs) using mechanochemistry to mitigate surface oxidation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Jilin University, State Key Laboratory of Supramolecular Structure and Materials, 2699 Qianjin Street, 130012, Changchun, CHINA.
To date, few systematic approach has been established for predicting catalytic performance by analyzing the spectral information of molecules adsorbed on photocatalyst surfaces. Effective charge transfer (CT) between the semiconductor photocatalysts and surface-absorbed molecules is essential for enhancing catalytic activity and optimizing light energy utilization. This study aimed to validate the surface-enhanced Raman spectroscopy (SERS) based on the CT enhancement mechanism in investigating the CT process during semiconductor photocatalytic C-C coupling model reactions.
View Article and Find Full Text PDFPutrescine is a kind of physical diamine that is closely related to food deterioration and food quality safety. This study employs a novel fiber optic biosensor based on S-tapered and waist extension techniques, as well as localized surface plasmon resonance (LSPR), to detect putrescine accurately. The gold nanoparticles (AuNPs) are fixed on the fiber to excite LSPR.
View Article and Find Full Text PDFPeerJ
January 2025
Florida Museum of Natural History, University of Florida, Gainesville, FL, United States of America.
The mechanisms that regulate minor and trace element biomineralization in the echinoid skeleton can be primarily controlled biologically (, by the organism and its vital effects) or by extrinsic environmental factors. Assessing the relative role of those controls is essential for understanding echinoid biomineralization, taphonomy, diagenesis, and their potential as geochemical archives. In this study, we (1) contrast geochemical signatures of specimens collected across multiple taxa and environmental settings to assess the effects of environmental and physiological factors on skeletal biomineralogy; and (2) analyze the nanomechanical properties of the echinoid skeleton to assess potential linkages between magnesium/calcium (Mg/Ca) ratios and skeletal nanohardness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!