Copper as an antibacterial agent for human pathogenic multidrug resistant Burkholderia cepacia complex bacteria.

J Biosci Bioeng

State Key Laboratory of Rice Biology and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China.

Published: December 2011

The Burkholderia cepacia complex (Bcc) consists of 17 closely related multidrug resistant bacterial species that are difficult to eradicate. Copper has recently gained attention as an antimicrobial agent because of its inhibitory effects on bacteria, yeast, and viruses. The objective of this study was to evaluate the antibacterial activity of copper surfaces and copper powder against members of the B. cepacia complex. The antibacterial activity of different copper surfaces was evaluated by incubating them with Bcc strain suspensions (5×10(7)cfu/ml). The bacterial survival counts were calculated and the data for various copper surfaces were compared to the data for stainless steel and polyvinylchloride, which were used as control surfaces. The antibacterial activity of copper powder was determined with the diffusimetrical technique and the zone of inhibition was evaluated with paper disks. A single cell gel electrophoresis assay, staining assays, and inductively coupled plasma mass spectroscopy were performed to determine the mechanism responsible for the bactericidal activity. The results showed a significant decrease in the viable bacterial count after exposure to copper surfaces. Moreover, the copper powder produced a large zone of inhibition and there was a significantly higher influx of copper ions into the bacterial cells that were exposed to copper surfaces compared to the controls. The present study demonstrates that metallic copper has an antibacterial effect against Bcc bacteria and that copper adversely affects the bacterial cellular structure, thus resulting in cell death. These findings suggest that copper could be utilized in health care facilities to reduce the bioburden of Bcc species, which may protect susceptible members of the community from bacterial infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2011.08.017DOI Listing

Publication Analysis

Top Keywords

copper surfaces
20
copper
14
cepacia complex
12
antibacterial activity
12
activity copper
12
copper powder
12
copper antibacterial
8
multidrug resistant
8
burkholderia cepacia
8
surfaces copper
8

Similar Publications

CuSeO@f-CNFs: A superoxide nanozyme for the selective nanomolar determination of the key cardiovascular biomarker, Glutathione.

Talanta

January 2025

International Ph. D Program in Innovative Technology of Biomedical Engineering & Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Research Center for Intelligence Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan. Electronic address:

Nanocomposites that mimic the characteristics of enzymes, commonly as nanozymes, can function as an efficient sensing material with high selectivity towards the targeted biological macromolecule. These nanozymes overcome of the challenges that arise when using natural enzymes as sensing material. This study presents a novel nanozyme, Copper Selenite (CuSeO) nanoparticles mounted on f-CNF, to electrochemically determine a potential cardiovascular biomarker, Glutathione (GSH).

View Article and Find Full Text PDF

Metal powders are crucial precursors for manufacturing surfaces through thermal spraying, cold spraying, and 3D printing methods. However, surface oxidation of these precursors poses a challenge to the coherence of the metallic materials during manufacturing processes. Herein, we introduce a method for surface modification of copper powder with N-heterocyclic carbenes (NHCs) using mechanochemistry to mitigate surface oxidation.

View Article and Find Full Text PDF

Putting Charge Transfer Degree as a Bridge Connecting Surface-Enhanced Raman Spectroscopy and Photocatalysis.

Angew Chem Int Ed Engl

January 2025

Jilin University, State Key Laboratory of Supramolecular Structure and Materials, 2699 Qianjin Street, 130012, Changchun, CHINA.

To date, few systematic approach has been established for predicting catalytic performance by analyzing the spectral information of molecules adsorbed on photocatalyst surfaces. Effective charge transfer (CT) between the semiconductor photocatalysts and surface-absorbed molecules is essential for enhancing catalytic activity and optimizing light energy utilization. This study aimed to validate the surface-enhanced Raman spectroscopy (SERS) based on the CT enhancement mechanism in investigating the CT process during semiconductor photocatalytic C-C coupling model reactions.

View Article and Find Full Text PDF

Putrescine is a kind of physical diamine that is closely related to food deterioration and food quality safety. This study employs a novel fiber optic biosensor based on S-tapered and waist extension techniques, as well as localized surface plasmon resonance (LSPR), to detect putrescine accurately. The gold nanoparticles (AuNPs) are fixed on the fiber to excite LSPR.

View Article and Find Full Text PDF

The mechanisms that regulate minor and trace element biomineralization in the echinoid skeleton can be primarily controlled biologically (, by the organism and its vital effects) or by extrinsic environmental factors. Assessing the relative role of those controls is essential for understanding echinoid biomineralization, taphonomy, diagenesis, and their potential as geochemical archives. In this study, we (1) contrast geochemical signatures of specimens collected across multiple taxa and environmental settings to assess the effects of environmental and physiological factors on skeletal biomineralogy; and (2) analyze the nanomechanical properties of the echinoid skeleton to assess potential linkages between magnesium/calcium (Mg/Ca) ratios and skeletal nanohardness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!