Disc degeneration (DD) is often accompanied by a height reduction of the anterior and posterior discs (AD and PD, respectively), and this affect the way in which articulating posterior facets (PFs) come into contact during physiological motions. Any increase in the contact between overlapping articulating facet surfaces increases PF loading. Development of adjacent segment disease is a significant clinical concern. It still is not clear how degenerative motion changes in AD and PD heights affect the mechanics of adjacent segment discs and facets. We hypothesized that changes in axial height patterns (in the AD and PD) at the degenerated C5-C6 disc-segment would affect axial height patterns (in the AD and PD) above and below the degenerated disc-segment. A previously validated poroelastic three-dimensional finite element (FE) model of a normal C3-T1 segment was used. Two additional C3-T1 models were built with moderate and severe DD at C5-C6. The three FE models were evaluated in flexion and extension. With progressive C5-C6 DD, AD and PD flexibility (axial deformation or elongation per unit load) at C5-C6 decrease with a compensatory corresponding flexibility increase in adjacent segments (normal), whereas PF loading increased at all segments only during extension. Changes in AD and PD flexibility and PF loading were higher at inferior segments than at superior segments. This study confirmed the hypothesis that the anterior and posterior discs and articulating facets of cervical spine segments are affected during flexion and extension motions when a disc-segment degenerates. Motion changes involving a higher PD height loss, both at the degenerated and adjacent segments, would further increase PF loading along the posterior spinal column - a possible mechanism for the dysfunctioning of the facet joints. The current data should be compared to other multi-segmental cervical spine experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.medengphy.2011.08.014DOI Listing

Publication Analysis

Top Keywords

disc degeneration
8
posterior facets
8
finite element
8
element model
8
anterior posterior
8
posterior discs
8
adjacent segment
8
motion changes
8
axial height
8
height patterns
8

Similar Publications

Cost-Utility of Lumbar Interbody Fusion Surgery: A Systematic Review.

Spine J

January 2025

Hoag Orthopedics, 16300 Sand Canyon Ave., Suite. 500, Irvine, CA 92618, United States. Electronic address:

Background Context: Lumbar interbody fusion (LIF) is a common surgical intervention for treating lumbar degenerative disorders. Increasing demand has contributed to ever-increasing healthcare expenditure and economic burden. To address this, cost-utility analyses (CUAs) compare value in the context of patient outcomes.

View Article and Find Full Text PDF

Background: Painful degeneration of the sternoclavicular joint refractory to nonoperative treatment has historically been managed with resection of the degenerative segment of the medial clavicle. Although this has produced good results with improvement in symptoms, recurrent pain necessitating revision surgery is not an infrequently encountered outcome. To reduce the occurrence of recurrent postoperative pain, a novel technique to reconstruct the intra-articular disc at the time of medial clavicle resection was developed.

View Article and Find Full Text PDF

Design and Ex Vivo Evaluation of a PCLA Degradable Device To Improve Annulus Fibrosus Repair.

ACS Appl Bio Mater

January 2025

Polymers for Health and Biomaterials, IBMM UMR 5247, CNRS, ENSCM, University of Montpellier, 34090 Montpellier, France.

With a prevalence of over 90% in people over 50, intervertebral disc degeneration (IVDD) is a major health concern. This weakening of the intervertebral discs can lead to herniation, where the nucleus pulpus (NP) leaks through the surrounding Annulus Fibrosus (AF). Considering the limited self-healing capacity of AF tissue, an implant is needed to restore its architecture and function.

View Article and Find Full Text PDF

Clinical and Structural Parameters in Autosomal Dominant Optic Atrophy Patients: A Cross-Sectional Study Using Optical Coherence Tomography.

J Neuroophthalmol

November 2024

Ophthalmology Department (AC-C, MF-R, SA-A, RA, BS-D), Seu Maternitat, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain; Faculty of Medicine and Health Sciences (AC-C, SA-A, BS-D), Universitat de Barcelona, Barcelona, Spain; Fundació Per La Recerca Biomèdica-IDIBAPS (MF-R, SA-A, BS-D), Barcelona, Spain; and Ophthalmology Department (MS-G), Consorci Mar Parc de Salut de Barcelona, Barcelona, Spain.

Background: Autosomal Dominant Optic Atrophy (ADOA) is a hereditary optic neuropathy characterized by retinal ganglion cell degeneration and optic nerve fiber loss. This study examined the correlation between clinical and structural parameters in patients with ADOA using optical coherence tomography (OCT) and explored potential clinical biomarkers.

Methods: A cross-sectional, case-control observational study included 27 patients with ADOA and 27 age- and sex-matched healthy controls.

View Article and Find Full Text PDF

Nucleus pulposus cell (NPC) senescence contributes to intervertebral disc degeneration (IVDD). However, the underlying molecular mechanisms are not fully understood. In this study, it is demonstrated that angiotensin-converting enzyme 2 (ACE2) counteracted the aging of NPCs and IVDD at the cellular and physiological levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!