Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We investigated the nature and stability of the interactions established between polyquaternium (PQ10) and perfluorodecanoic acid (PFDA) in terms of different variables such as composition, ionic strength, pH and temperature. The PQ10-PFDA complex formation is interpreted in view of electrostatic associations between carboxylic and quaternary amino group. The properties of the systems were characterized by rheology analysis. The adhesive properties of complex were also assessed. One of the macroscopic features of the new material formed in solution was the increase in viscosity from 6 Pas for 1% PQ10 (MW 1.7×10(6) g mol(-1)) to about 1000 Pas by the addition of enough PFDA to reach 1:0.5 ammonium:carboxylic group molar ratio. At this proportion, PQ10 and PFDA form a network structure with a maximum viscosity and storage modulus. This maximum coincides with an increased mucoadhesive work.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2011.08.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!