Three-dimensional printing (3DP) is a versatile method to produce scaffolds for tissue engineering. In 3DP the solid is created by the reaction of a liquid selectively sprayed onto a powder bed. Despite the importance of the powder properties, there has to date been a relatively poor understanding of the relation between the powder properties and the printing outcome. This article aims at improving this understanding by looking at the link between key powder parameters (particle size, flowability, roughness, wettability) and printing accuracy. These powder parameters are determined as key factors with a predictive value for the final 3DP outcome. Promising results can be expected for mean particle size in the range of 20-35 μm, compaction rate in the range of 1.3-1.4, flowability in the range of 5-7 and powder bed surface roughness of 10-25 μm. Finally, possible steps and strategies in pushing the physical limits concerning improved quality in 3DP are addressed and discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2011.08.027 | DOI Listing |
Front Bioeng Biotechnol
January 2025
Department of Hepatobiliary Surgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China.
Biliary duct injury, biliary atresia (BA), biliary tract tumors, primary sclerosing cholangitis (PSC), and other diseases are commonly encountered in clinical practice within the digestive system. To gain a better understanding of the pathogenesis and development of these diseases and explore more effective treatment methods, organoid technology has recently garnered significant attention. Organoids are three-dimensional structures derived from stem/progenitor cells that can faithfully mimic the intricate structure and physiological function of tissues or organs .
View Article and Find Full Text PDFConf Proc Int Conf Image Form Xray Comput Tomogr
August 2024
Department of Radiology, Perelman School of Medicine, Philadelphia, PA, USA.
Respiratory motion phantoms can be used for evaluation of CT imaging technologies such as motion artifact reduction algorithms and deformable image registration. However, current respiratory motion phantoms do not exhibit detailed lung tissue structures and thus do not provide a realistic testing environment. This paper presents PixelPrint, a method for 3D-printing deformable lung phantoms featuring highly realistic internal structures, suitable for a broad range of CT evaluations, optimizations, and research.
View Article and Find Full Text PDFBiomed Mater
January 2025
Department of Biosystems Engineering, Seoul National University, Seoul 08826, Republic of Korea.
Biodegradable medical devices undergo degradation following implantation, potentially leading to clinical failure. Consequently, it is necessary to assess the change in their properties post-implantation. However, a standardized method for the precise evaluation of the changes in their physicochemical properties is currently lacking.
View Article and Find Full Text PDFJ Sch Health
January 2025
Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Washington, USA.
Background: Additive manufacturing or 3-dimensional (3D) printing is an emerging technology with increasing prevalence in non-industrial settings such as university and school settings. However, printers are often located in spaces not designed for this purpose.
Methods: 3D-printer use in 11 university and K-12 schools was evaluated by identifying emissions using area air sampling for volatile organic compounds (VOCs) and particle counting instruments (PCIs) measuring ultrafine particulate (UFP) and evaluating controls to reduce potential exposure.
3D Print Med
January 2025
Musculoskeletal Biomechanics Research Lab, Department of Mechanical Engineering, McGill University, 845 Sherbrooke St. W (163), Montréal, QC, H3A 0C3, Canada.
Background: There exists a need for validated lumbar spine models in spine biomechanics research. Although cadaveric testing is the current gold standard for spinal implant development, it poses significant issues related to reliability and repeatability due to the wide variability in cadaveric physiologies. Moreover, there are increasing ethical concerns with human dissection practices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!