Jumonji C (JmjC) lysine demethylases (KDMs) are Fe(II)-dependent hydroxylases that catalyze the oxidative demethylation of methyllysine residues in histones and nonhistone proteins. These enzymes play vital roles in regulating cellular processes such as gene expression, cell cycle progression, and stem cell self-renewal and differentiation. Despite their biological importance, recombinant forms of JmjC KDMs generally display low enzymatic activity and have remained challenging to isolate in a highly active form. Here we present a simple affinity purification scheme for Strep(II)-tagged JmjC KDMs that minimizes contamination by transition state metal ions, yielding highly active and pure enzyme. We also describe an optimized continuous fluorescent assay for KDMs that detects formaldehyde production during demethylation via a coupled reaction using formaldehyde dehydrogenase. Purification and kinetic analysis of the human KDMs JMJD2A and JMJD2D using these methods yielded activities substantially higher than those previously reported for these enzymes, which are comparable to that of the flavin-dependent KDM LSD1. In addition, we show that JMJD2A exhibited a lower catalytic efficiency toward a histone peptide bearing a chemically installed trimethyllysine analog compared with a bona fide trimethylated substrate. The methodology described here is broadly applicable to other JmjC KDMs, facilitating their biochemical characterization and high-throughput screening applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2011.08.034 | DOI Listing |
Sci Rep
January 2025
New materials Technology and Processing Reserearch Center, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.
The conversion of diluted CO₂ into high-energy fuels is increasingly central to renewable energy research. This study investigates the efficacy of a Gd₂NiMnO₆ dendritic nanofibrous (DNF) photocatalyst in transforming carbon dioxide to methane through photoreduction. Gd₂NiMnO₆ DNF was found to provide active adsorption sites and control the strand dimensions for metal groups, facilitating the chemical absorption of CO₂.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Xiangtan University, College of Chemistry, CHINA.
Efficient circularly polarized luminescence (CPL) optical waveguides have significant potential for advancing photonic and optoelectronic devices. However, the development of CPL optical waveguides materials (OWMs) with low optical loss coefficient remains a considerable challenge. To overcome this, we design and synthesize CPL OWMs based on room-temperature phosphorescent liquid crystalline polymers (LCPs).
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China. Electronic address:
Background: Carbosulfan residues in environment is very harmful to human health. The rapid and high sensitive detection of carbosulfan residues is particularly important to guarantee human health and safety. The conventional chromatographic techniques and enzyme inhibition strategies cannot realize on-site and visual detection of carbosulfan.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China. Electronic address:
Background: Integrating natural enzymes and nanomaterials exhibiting tailored enzyme-like activities is an effective strategy for the application of cascade reactions. It is essential to develop a highly efficient and robust glucose oxidase-catalase (GOx-CAT) cascade system featuring controllable enzyme activity, a reliable supply of oxygen, and improved stability for glucose depletion in cancer starvation therapy. However, the ambiguous relationship between structure and performance, and the difficulty in controlling enzyme-mimic activity, significantly hinder their broader application.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Dept. of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea. Electronic address:
Background: Atrazine (ATZ), a pesticide that poses serious health problems, is observed in the environment, thereby prompting its periodic monitoring and control using functional biosensors. However, established methods for ATZ detection have limited applicability. Two-dimensional (2D) metal azolate frameworks (MAF) have a higher surface area per unit volume and provide easier access to active sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!