The recently introduced genome theory of cancer evolution provides a new framework for evolutionary studies on cancer. In particular, the established relationship between the large number of individual molecular mechanisms and the general evolutionary mechanism of cancer calls upon a change in our strategies that have been based on the characterization of common cancer gene mutations and their defined pathways. To further explain the significance of the genome theory of cancer evolution, a brief review will be presented describing the various attempts to illustrate the evolutionary mechanism of cancer, followed by further analysis of some key components of somatic cell evolution, including the diversity of biological systems, the multiple levels of information systems and control systems, the two phases (the punctuated or discontinuous phase and gradual Darwinian stepwise phase) and dynamic patterns of somatic cell evolution where genome replacement is the driving force. By linking various individual molecular mechanisms to the level of genome population diversity and tumorigenicity, the general mechanism of cancer has been identified as the evolutionary mechanism of cancer, which can be summarized by the following three steps including stress-induced genome instability, population diversity or heterogeneity, and genome-mediated macroevolution. Interestingly, the evolutionary mechanism is equal to the collective aggregate of all individual molecular mechanisms. This relationship explains why most of the known molecular mechanisms can contribute to cancer yet there is no single dominant mechanism for the majority of clinical cases. Despite the fact that each molecular mechanism can serve as a system stress and initiate the evolutionary process, to achieve cancer, multiple cycles of genome-mediated macroevolution are required and are a stochastically determined event. Finally, the potential clinical implications of the evolutionary mechanism of cancer are briefly reviewed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/B978-0-12-387688-1.00008-9 | DOI Listing |
Trends Biochem Sci
January 2025
Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX USA. Electronic address:
S-Adenosylmethionine (SAM) is the primary methyl donor for numerous cellular methylation reactions. Its central role in methylation and involvement with many pathways link its availability to the regulation of cellular processes, the dysregulation of which can contribute to disease states, such as cancer or neurodegeneration. Emerging evidence indicates that intracellular SAM levels are maintained within an optimal range by a variety of homeostatic mechanisms.
View Article and Find Full Text PDFCurr Biol
January 2025
Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany. Electronic address:
Brood care relies on interactions between parents and offspring. Emergence of nestlings from their nest has been hypothesized to rely on the readout by the parent of the maturational state of the young. Theoretical considerations predict a conflict: parents should push for early emergence, if possible, to reduce care demands and maximize the number of reproductive cycles, whereas offspring should delay leaving to maximize resource allocation and protection by the parents.
View Article and Find Full Text PDFEmerg Microbes Infect
January 2025
College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.
Phages demonstrate remarkable promise as antimicrobial agents against antibiotic-resistant bacteria. However, the emergence of phage-resistant strains poses challenges to their effective application. In this paper, we presented the isolation of a phage adaptive mutant that demonstrated enhanced and sustained antibacterial efficacy through the co-evolution of () 111-2 and phage ZX1Δint .
View Article and Find Full Text PDFDevelopment
January 2025
Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA.
Developmental biologists can perform studies that describe a phenomenon (descriptive work) and/or explain how the phenomenon works (mechanistic work). There is a prevalent perception that molecular/genetic explanations achieved via perturbations of gene function are the primary means of advancing mechanistic knowledge. We believe this to be a limited perspective, one that does not effectively represent the breadth of work in our field.
View Article and Find Full Text PDFFront Parasitol
September 2024
Centro de Cálculo Científico de la Universidad de Los Andes (CeCalCULA), Universidad de Los Andes (ULA), Mérida, Venezuela.
Artemisinin-based treatments (ACTs) are the first therapy currently used to treat malaria produced by . However, in recent years, increasing evidence shows that some strains of are less susceptible to ACT in the Southeast Asian region. A data reanalysis of several omics approaches currently available about parasites of that have some degree of resistance to ACT was carried out.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!