Transforming growth factor-β (TGF-β), TGF-β receptor (TGF-βR), and epidermal growth factor receptor (EGFR) are important in the pathogenesis of kidney fibrosis, a result of renal fibroblast activation. The EGFR kinase inhibitor gefitinib attenuates glomerular fibrosis in hypertensive rats whereas dominant-negative EGFR attenuates interstitial fibrosis in mouse with acute renal ischemia. Thus, we studied the effects and molecular mechanisms of gefitinib in TGF-β1-induced mitogenesis and collagen production in normal rat kidney interstitial fibroblast (NRK-49F) cells. We found that TGF-β1 increased cell mitogenesis. TGF-β1 also time-dependently increased cyclin D1 protein expression. TGF-β1 rapidly transactivated EGFR. SB431542 (a type I TGF-βR kinase inhibitor) and SB203580 (a p38 kinase inhibitor) attenuated TGF-β1-induced phosphorylation of Smad2/3 protein. SB431542 and gefitinib attenuated TGF-β1-induced phosphorylation of ERK1/2 and p38 kinase. SB431542 and gefitinib also attenuated TGF-β1-induced cyclin D1 protein expression. Moreover, SB431542, gefitinib, PD98059 (an ERK1/2 inhibitor), and SB203580 attenuated TGF-β1-induced cell mitogenesis. Finally, SB431542 and gefitinib attenuated TGF-β1-induced collagen production. We concluded that gefitinib attenuates TGF-β1-induced cell mitogenesis via the EGFR-ERK1/2/p38 kinase pathway in NRK-49F cells. Moreover, gefitinib attenuates TGF-β1-induced cyclin D1 protein expression and collagen production. Thus, gefitinib attenuates TGF-β1-induced mitogenesis and collagen production in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.trsl.2011.06.002 | DOI Listing |
Biomed Rep
March 2025
Department of Biology, Xavier University of Louisiana, New Orleans, LA 70125, USA.
As a putative lung specific oncogene, the transducin-like enhancer of split 1 (TLE1) corepressor drives an anti-apoptotic and pro-epithelial-mesenchymal transition (EMT) gene transcriptional programs in human lung adenocarcinoma (LUAD) cells, thereby promoting anoikis resistance and tumor aggressiveness. Through its survival- and EMT-promoting gene regulatory programs, TLE1 may impact drug sensitivity and resistance in lung cancer cells. In the present study, a novel function of TLE1 was uncovered as an inhibitor of the antitumor effects of the epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) gefitinib in the human LUAD cell line A549, which exhibits moderate sensitivity to EGFR-TKI.
View Article and Find Full Text PDFChin Med
January 2025
Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
Background: With extended gefitinib treatment, the therapeutic effect in some non-small cell lung cancer (NSCLC) patients declined with the development of drug resistance. Aidi injection (ADI) is utilized in various cancers as a traditional Chinese medicine prescription. This study explores the molecular mechanism by which ADI, when combined with gefitinib, attenuates gefitinib resistance in PC9GR NSCLC cells.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041.
Commun Biol
December 2024
Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University; State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China.
Inevitable gefitinib resistance is the biggest bottleneck in current treatment and the mechanisms are not fully understood. Here, we observe that PFTK1 (also named CDK14) is significantly enhanced in NSCLC with gefitinib resistance. And the upregulation of PFTK1 is negatively associated with progression-free survival (PFS) in NSCLC patients who receive gefitinib treatment.
View Article and Find Full Text PDFPulm Pharmacol Ther
December 2024
The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Respiratory Critical Care, Hebei Institute of Respiratory Diseases, No. 215 Heping West Road, Shijiazhuang, Hebei, 050000, China. Electronic address:
The established recognition of N6-methyladenosine (m6A) modification as an indispensable regulatory agent in human cancer is widely accepted. However, the understanding of m6A's role and the mechanisms underlying its contribution to gefitinib resistance is notably limited. Herein, using RT-qPCR, Western blot, Cell proliferation and apoptosis, as well as RNA m6A modification assays, we substantiated that heightened FTO (Fat Mass and Obesity-associated protein) expression substantially underpins the emergence of gefitinib resistance in NSCLC cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!