Transforming growth factor-β (TGF-β), TGF-β receptor (TGF-βR), and epidermal growth factor receptor (EGFR) are important in the pathogenesis of kidney fibrosis, a result of renal fibroblast activation. The EGFR kinase inhibitor gefitinib attenuates glomerular fibrosis in hypertensive rats whereas dominant-negative EGFR attenuates interstitial fibrosis in mouse with acute renal ischemia. Thus, we studied the effects and molecular mechanisms of gefitinib in TGF-β1-induced mitogenesis and collagen production in normal rat kidney interstitial fibroblast (NRK-49F) cells. We found that TGF-β1 increased cell mitogenesis. TGF-β1 also time-dependently increased cyclin D1 protein expression. TGF-β1 rapidly transactivated EGFR. SB431542 (a type I TGF-βR kinase inhibitor) and SB203580 (a p38 kinase inhibitor) attenuated TGF-β1-induced phosphorylation of Smad2/3 protein. SB431542 and gefitinib attenuated TGF-β1-induced phosphorylation of ERK1/2 and p38 kinase. SB431542 and gefitinib also attenuated TGF-β1-induced cyclin D1 protein expression. Moreover, SB431542, gefitinib, PD98059 (an ERK1/2 inhibitor), and SB203580 attenuated TGF-β1-induced cell mitogenesis. Finally, SB431542 and gefitinib attenuated TGF-β1-induced collagen production. We concluded that gefitinib attenuates TGF-β1-induced cell mitogenesis via the EGFR-ERK1/2/p38 kinase pathway in NRK-49F cells. Moreover, gefitinib attenuates TGF-β1-induced cyclin D1 protein expression and collagen production. Thus, gefitinib attenuates TGF-β1-induced mitogenesis and collagen production in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.trsl.2011.06.002DOI Listing

Publication Analysis

Top Keywords

gefitinib attenuates
20
attenuated tgf-β1-induced
20
collagen production
16
sb431542 gefitinib
16
nrk-49f cells
12
kinase inhibitor
12
cell mitogenesis
12
cyclin protein
12
protein expression
12
gefitinib attenuated
12

Similar Publications

As a putative lung specific oncogene, the transducin-like enhancer of split 1 (TLE1) corepressor drives an anti-apoptotic and pro-epithelial-mesenchymal transition (EMT) gene transcriptional programs in human lung adenocarcinoma (LUAD) cells, thereby promoting anoikis resistance and tumor aggressiveness. Through its survival- and EMT-promoting gene regulatory programs, TLE1 may impact drug sensitivity and resistance in lung cancer cells. In the present study, a novel function of TLE1 was uncovered as an inhibitor of the antitumor effects of the epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) gefitinib in the human LUAD cell line A549, which exhibits moderate sensitivity to EGFR-TKI.

View Article and Find Full Text PDF

Background: With extended gefitinib treatment, the therapeutic effect in some non-small cell lung cancer (NSCLC) patients declined with the development of drug resistance. Aidi injection (ADI) is utilized in various cancers as a traditional Chinese medicine prescription. This study explores the molecular mechanism by which ADI, when combined with gefitinib, attenuates gefitinib resistance in PC9GR NSCLC cells.

View Article and Find Full Text PDF

Folic Acid-Modified Milk Exosomes Delivering c-Kit siRNA Overcome EGFR-TKIs Resistance in Lung Cancer by Suppressing mTOR Signaling and Stemness.

Int J Biol Sci

January 2025

Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041.

Article Synopsis
  • The study addresses a common issue in lung cancer treatment, where patients develop resistance to EGFR-TKIs like gefitinib, leading to worse outcomes.
  • The researchers developed a novel therapy using folic acid-modified milk exosomes loaded with c-kit siRNA (FA-mExo-siRNA-c-kit) to counteract this resistance by targeting the c-kit gene, which is linked to stemness traits in cancer cells.
  • Results showed that this approach not only reduced c-kit expression and stemness characteristics but also slowed tumor growth and improved survival in experimental models, highlighting its potential as a new treatment strategy for resistant lung cancer.
View Article and Find Full Text PDF

Inevitable gefitinib resistance is the biggest bottleneck in current treatment and the mechanisms are not fully understood. Here, we observe that PFTK1 (also named CDK14) is significantly enhanced in NSCLC with gefitinib resistance. And the upregulation of PFTK1 is negatively associated with progression-free survival (PFS) in NSCLC patients who receive gefitinib treatment.

View Article and Find Full Text PDF

FTO promotes gefitinib-resistance by enhancing PELI3 expression and autophagy in non-small cell lung cancer.

Pulm Pharmacol Ther

December 2024

The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Respiratory Critical Care, Hebei Institute of Respiratory Diseases, No. 215 Heping West Road, Shijiazhuang, Hebei, 050000, China. Electronic address:

The established recognition of N6-methyladenosine (m6A) modification as an indispensable regulatory agent in human cancer is widely accepted. However, the understanding of m6A's role and the mechanisms underlying its contribution to gefitinib resistance is notably limited. Herein, using RT-qPCR, Western blot, Cell proliferation and apoptosis, as well as RNA m6A modification assays, we substantiated that heightened FTO (Fat Mass and Obesity-associated protein) expression substantially underpins the emergence of gefitinib resistance in NSCLC cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!