Escherichia coli O157:H7 has been associated in multiple outbreaks linked to the consumption of whole produce and fresh-cut leafy vegetables. However, plant-based foods had not been traditionally recognized as a host for enteric pathogens until the elevated incidence of produce-related outbreaks became apparent. The survival dynamics of two cocktails of generic E. coli (environmental water, plant and soil isolates) and E. coli O157:H7 within the phyllosphere of Mizuna, Red Chard and Tatsoi during their production, harvest, minimal processing, packaging and storage over two greenhouse production cycles were studied. Genotyping of applied generic E. coli strains to evaluate their comparative survival and relative abundance in the phyllosphere by REP-PCR is also reported. The Mizuna, Red Chard and Tatsoi shoots were grown under standard greenhouse conditions and fertility management. Both E. coli cocktails were spray-inoculated separately and determined to result in an initial mean population density of log 4.2 CFU/cm². Leaves were harvested as mini-greens approximating commercial maturity, minimally processed in a model washing system treated with 3 mg/L of ClO₂ and stored for 7 days at 5 °C. Rapid decline of generic E. coli and E. coli O157:H7 populations was observed for all plant types regardless of the leaf age at the time of inoculation and the irrigation type across both seasonal growth cycle trials. The decline rate of the surviving populations for the fall season was slower than for the summer season. The minimal processing with 3 mg/L of ClO₂ was not sufficient to fully disinfect the inoculated leaves prior to packaging and refrigerated storage. Viable populations of E. coli and E. coli O157:H7 were confirmed throughout storage, including the final time point at the end of acceptable visual leaf quality. In this study, the ability of low populations of E. coli to survive during production and postharvest operations in selected mini-greens has been demonstrated. However, further field-based trials are needed to expand understanding of the post-contamination fate of enteric bacterial pathogens on leafy vegetables. In summary, this research work provides baseline data upon which to develop food safety preventive control guidance during the production and minimal processing of these crops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijfoodmicro.2011.08.027 | DOI Listing |
Int J Biol Macromol
October 2024
Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.
Foodborne Pathog Dis
July 2024
Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Concepción, Chile.
Zhonghua Liu Xing Bing Xue Za Zhi
August 2022
Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
To evaluate the typing and clinical application effect based on clustered regularly interspaced short palindromic repeats (CRISPRs), serotype, and Multilocus Sequence Typing (MLST). The spacers, serotype and sequence type (ST) were obtained with CRISPRsFinder, SeroTypeFinder and MLST. PCR was used to amplify the CRISPRs, and the spacers were used to predict serotype and ST, then comparing with the serotype and ST.
View Article and Find Full Text PDFRSC Adv
January 2022
College of Artificial Intelligence, Guangdong Mechanical & Electrical Polytechnic Guangzhou 510550 P. R. China +86-20-36552429 +86-20-36552429.
Rapid measurement of waterborne bacterial viability is crucial for ensuring the safety of public health. Herein, we proposed a colorimetric assay for rapid measurement of waterborne bacterial viability based on a difunctional gold nanoprobe (dGNP). This versatile dGNP is composed of bacteria recognizing parts and signal indicating parts, and can generate color signals while recognizing bacterial suspensions of different viabilities.
View Article and Find Full Text PDFCan J Microbiol
September 2021
Department of Food Engineering, Beytepe, Hacettepe University, Ankara, Turkey.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!