Mechanisms of integrin activation and trafficking.

Curr Opin Cell Biol

Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.

Published: October 2011

Integrin adhesion receptors are essential for the normal function of most multicellular organisms, and defective integrin activation or integrin signaling is associated with an array of pathological conditions. Integrins are regulated by conformational changes, clustering, and trafficking, and regulatory mechanisms differ strongly between individual integrins and between cell types. Whereas integrins in circulating blood cells are activated by an inside-out-induced conformational change that favors high-affinity ligand binding, β1-integrins in adherent cells can be activated by force or clustering. In addition, endocytosis and recycling play an important role in the regulation of integrin turnover and integrin redistribution in adherent cells, especially during dynamic processes such as cell migration and invasion. Integrin trafficking is strongly regulated by their cytoplasmic tails, and the mechanisms are now being identified.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ceb.2011.08.005DOI Listing

Publication Analysis

Top Keywords

integrin activation
8
cells activated
8
adherent cells
8
integrin
6
mechanisms integrin
4
activation trafficking
4
trafficking integrin
4
integrin adhesion
4
adhesion receptors
4
receptors essential
4

Similar Publications

Papillary thyroid cancer (PTC) is often characterized by indolent behavior, small tumors with slow cell proliferation and a tendency to metastasize to cervical lymph node simultaneously, and the molecular mechanisms underlying that remain poorly understood. In this study, FN1 was the hottest gene of PTC and distinctive expression in PTC cells. FN1 deficiency severely inhibited the p53 signaling pathway, especially cyclin proteins, resulting in increased cell growth but hampered invasion.

View Article and Find Full Text PDF

We performed a systems vaccinology analysis to investigate immune responses in humans to an H5N1 influenza vaccine, with and without the AS03 adjuvant, to identify factors influencing antibody response magnitude and durability. Our findings revealed a platelet and adhesion-related blood transcriptional signature on day 7 that predicted the longevity of the antibody response, suggesting a potential role for platelets in modulating antibody response durability. As platelets originate from megakaryocytes, we explored the effect of thrombopoietin (TPO)-mediated megakaryocyte activation on antibody response longevity.

View Article and Find Full Text PDF

Background: Targeting the TGF-β pathway in tumor therapy has proven challenging due to the highly context-dependent functions of TGF-β. Integrin αvβ8, a pivotal activator of TGF-β, has been implicated in TGF-β signaling within tumors, as demonstrated by the significant anti-tumor effects of anti-αvβ8 antibodies. Nevertheless, the expression profile of αvβ8 remains a subject of debate, and the precise mechanisms underlying the anti-tumor effects of anti-αvβ8 antibodies are not yet fully elucidated.

View Article and Find Full Text PDF

[Analysis of Genes Related to Platelet Activation in Essential Thrombocythemia Based on Transcriptomics].

Zhongguo Shi Yan Xue Ye Xue Za Zhi

December 2024

Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.

Objective: To analyze the genes related to platelet activation in essential thrombocythemia (ET) based on transcriptome sequencing technology (RNA-seq), and to explore the potential targets related to ET thrombosis.

Methods: Blood samples from ET patients and healthy individuals were collected for RNA-seq, and differentially expressed lncRNAs, miRNAs, and mRNAs were selected to construct a lncRNA-miRNA-mRNA regulatory network. Differential mRNAs in the regulatory network were enriched and analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG).

View Article and Find Full Text PDF
Article Synopsis
  • Human mesenchymal stem cells (hMSCs) react to mechanical stimuli like stiffness and fluid viscosity, which impacts their behavior.
  • In environments with high fluid viscosity, hMSCs favor an osteogenic (bone-forming) phenotype over an adipogenic (fat-forming) one by altering their actin structure and enhancing cellular activities.
  • This research highlights fluid viscosity as an important factor that not only influences hMSC differentiation but also encourages a more immunosuppressive M2 macrophage phenotype.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!