Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. During radiotherapy of cancer, one of the undesirable side-effects is toxicity to normal cells. Compounds with antioxidant activities are being tried as 'prophylactic radioprotectants' to overcome this problem. We evaluated the protective effect of an aminothiazole compound, in the form of dendrodoine analogue (DA) originally derived from a marine tunicate, against γ-radiation-induced damage to lipid, protein, and DNA besides its cytotoxicity. Oxidative damage was examined by different biochemcial assays. Our studies reveal that DA gave significant protection, in fairly low concentrations, against damage induced by γ-radiation to rat liver mitochondria, plasmid pBR322 DNA, and mouse splenic lymphocytes in vitro. It also protected against oxidative damage in whole-body irradiated mice exposed to therapeutic dose of radiation (2 Gy) in vivo. Spleen, a major target organ for radiation damage, of the irradiated mice showed significant protection when treated with DA, as examined by histopathology. In conclusion, due to the possible protective effects against normal cells/tissues both in vitro and in vivo, DA shows potential to be a radioprotector for possible use during radiotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/10715762.2011.623836 | DOI Listing |
Background: Senile dementia (SD) is a deteriorative organic brain disorder and it comprises Alzheimer's disease (AD) as a major variant. SD is shown impairment of mental capacities whereas AD is degeneration of neurons. According to World Health Organization (WHO) report; more than 55 million peoples have dementia and it is raising 10 million new cases every year.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The University of Texas Health Science Center at Houston, Houston, TX, USA.
Background: Developing drugs for treating Alzheimer's disease (AD) has been extremely challenging and costly due to limited knowledge on underlying biological mechanisms and therapeutic targets. Repurposing drugs or their combination has shown potential in accelerating drug development due to the reduced drug toxicity while targeting multiple pathologies.
Method: To address the challenge in AD drug development, we developed a multi-task machine learning pipeline to integrate a comprehensive knowledge graph on biological/pharmacological interactions and multi-level evidence on drug efficacy, to identify repurposable drugs and their combination candidates RESULT: Using the drug embedding from the heterogeneous graph representation model, we ranked drug candidates based on evidence from post-treatment transcriptomic patterns, mechanistic efficacy in preclinical models, population-based treatment effect, and Phase 2/3 clinical trials.
Alzheimers Dement
December 2024
School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India.
Background: Parkinson's disease is an hypokinetic disorder characterized by selective loss of dopaminergic in substantia nigra pars compacta (SNPc) region of mid-brain. Dopaminergic degeneration of neurons is considered to be due to oxidative stress, neuroinflammation, neurons mitochondrial dysfunction and glutamate excitotoxicity etc. Filgrastim has been reported to produce anti-oxidant, anti-inflammatory and neuromodulatory actions in previous studies.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Afe Babalola University, Ado-Ekiti (ABUAD), Ado-Ekiti, Ekiti state, Nigeria.
Background: The impact of probiotics as gut and immunological modulator in restoring gut microbial balance and immune cells expression have generated much attention in the health sector. Its inhibitory effect on bacterial translocation and associated neural inflammatory processes has been reported. However, there is scarcity of data on its neuroprotective impact against neuroinflammation-associated neurodegeneration and memory impairment.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Yonsei University, Incheon, Incheon, Korea, Republic of (South).
Background: Cyclin Y (CCNY) is a member of cyclin protein family inhibiting long-term synaptic plasticity, which is related to the learning and memory function in neuronal system. Recently, CCNY has been reported to associate with the cognitive deficits in Alzheimer's disease (AD).
Method: In this study, we discovered PFTAIRE peptide to diminish CCNY protein level and to ameliorate cognitive dysfunction in AD.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!