AI Article Synopsis

  • A knee simulator with six stations was tested for a total of three million cycles to evaluate polyethylene wear in implants by exchanging them between stations, following ISO standards.
  • Changes in lubricant properties during testing were analyzed, revealing significant degradation and contamination issues.
  • The wear rate was similar to previous studies, and repeated wear patterns suggested that implants should not be exchanged across different testing stations.

Article Abstract

A six-station displacement-controlled knee simulator with separately controlled left (L) and right (R) banks (three wear implants per bank) was commissioned for a total of three million cycles (Mc) following ISO 14243-3. A commissioning protocol was applied to compare the polyethylene wear among the six wear stations by exchanging the implants between wear stations. Changes in lubricant characteristics during wear testing, such as polypeptide degradation, low-molecular-weight polypeptide concentration, and possible microbial contamination were also assessed. The total mean wear rate for the implants was 23.60 +/- 1.96 mm3/Mc and this was of a similar magnitude to the mean wear rate for the same implant tested under similar conditions by DePuy Orthopaedics Inc. (Warsaw, IN). Repeated run-in wear was observed when the implants were exchanged between wear stations, suggesting that implants should be subjected to the same wear station throughout the duration of a wear test. The total polypeptide degradation for the implants measured 30.53 +/- 3.96 percent; the low-molecular-weight polypeptide concentration of the "used" lubricant for implants (0.131 +/- 0.012 g/L) was 3.3 times greater than the mean polypeptide concentration of the fresh, "unused" lubricant (0.039 +/- 0.004 g/L). This increase in low-molecular weight polypeptide concentration was suggested to be attributable to protein shear in the articulation of the implant, the circulation of the lubricant, and some proteolytic activity. Sodium azide was ineffective in maintaining a sterile environment for wear testing as a single, highly motile Gram-negative micro-organism was identified in the lubricant from wear tests.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0954411911406061DOI Listing

Publication Analysis

Top Keywords

polypeptide concentration
16
wear
14
wear stations
12
displacement-controlled knee
8
wear testing
8
polypeptide degradation
8
low-molecular-weight polypeptide
8
wear rate
8
implants
7
lubricant
6

Similar Publications

Objectives: The usefulness of methotrexate-polyglutamates (MTX-PGs) concentration for management of rheumatoid arthritis has been debated. We aimed to clarify the association of MTX-PGs concentration with efficacy and safety in MTX-naïve patients initiating MTX in a prospective interventional clinical trial.

Methods: The MIRACLE trial enrolled 300 MTX-naïve patients.

View Article and Find Full Text PDF

Carboxy-Amidated AamAP1-Lys has Superior Conformational Flexibility and Accelerated Killing of Gram-Negative Bacteria.

Biochemistry

January 2025

Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa.

C-terminal amidation of antimicrobial peptides (AMPs) is a frequent minor modification used to improve antibacterial potency, commonly ascribed to increased positive charge, protection from proteases, and a stabilized secondary structure. Although the activity of AMPs is primarily associated with the ability to penetrate bacterial membranes, hitherto the effect of amidation on this interaction has not been understood in detail. Here, we show that amidation of the scorpion-derived membranolytic peptide AamAP1-Lys produces a potent analog with faster bactericidal activity, increased membrane permeabilization, and greater Gram-negative membrane penetration associated with greater conformational flexibility.

View Article and Find Full Text PDF

We report the reversible redox-controlled DNA condensation using a simple dicationic diphenylalanine derivative which contains a disulfide unit as linker. Despite the conventional belief that DNA condensing agents require a charge of +3 or higher, this dicationic molecule functions below its critical aggregation concentration, representing a non-canonical DNA condensing agent. The interaction with DNA of the studied compound combines electrostatic effects with hydrophobic/stacking interactions provided with the diphenylalanine moiety.

View Article and Find Full Text PDF

The potential of and bacteriocins in synergistic control of .

Prep Biochem Biotechnol

January 2025

Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma, Dodoma, Tanzania.

has developed resistance to most conventional antibiotics and is a causative agent of serious infections. Alternative therapies are urgently needed. Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, including () and (), and represent a potential solution.

View Article and Find Full Text PDF

Background/purpose: Membrane-free stem cell components (MFSCCs) have been developed by removing cell membranes with antigens to overcome the limitations associated with cell-based therapies and isolate effective peptides. MFSCCs have been reported to have effects on oral infection sites. Chronic inflammatory diseases cause excessive bone resorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!