Embryo developmental disruption during organogenesis produced by CF-1 murine periconceptional alcohol consumption.

Birth Defects Res B Dev Reprod Toxicol

Laboratorio de Reproducción y Fisiopatología Materno-Embrionaria, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Departamento de Biodiversidad y Biología Experimental (DBBE), Universidad de Buenos Aires (UBA), Argentina.

Published: December 2011

The aim was to study the control females (CF)-1 mouse embryo differentiation, growth, morphology on embryonic E- and N-cadherin expression at midgestation after periconceptional moderate alcohol ingestion. Adult female mice were exposed to 10% ethanol in drinking water for 17 days previous to and up to day 10 of gestation (ethanol-exposed females, EF) and were compared with nonexposed CF. EF presented reduced quantities of E10 to E10.5 embryos, greater percentage of embryos at stages less than E7.5, reduced implantation site numbers/female, and increased resorptions compared with CF. EF-embryo growth was significantly affected as evidenced by reduced cephalic and body sizes of E10 and E10.5 embryos (scanning electron microscopy) and decreased protein content of E10.5 embryos vs. CF embryos. A significantly higher percentage of EF-E10-10.5 embryos presented abnormal neural tube (NT) closure vs. the percentage of CF. E10 embryos from EF presented elevated tissue disorganization, pyknosis and nuclear condensation in somites, mesenchymal and neuroepithelial tissue. Immunohistochemical E- and N-cadherin distribution patterns were similar in organic structures of E10 embryos between groups. However, western blot revealed that E- and N-cadherin expression levels were significantly increased in EF-derived embryos vs. controls. Perigestational ethanol consumption by CF-1 mice induced significant damage in the organogenic embryogenesis by producing delayed differentiation, growth deficiencies, and increasing the frequency of NT defects. Ethanol exposure may disrupt cell-cell adhesion leading to upregulation of E- and N-cadherin expression suggesting that deregulation of cell adhesion molecules could be involved in the disruption of embryo development at organogenesis in CF-1 mouse.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bdrb.20329DOI Listing

Publication Analysis

Top Keywords

n-cadherin expression
12
e105 embryos
12
embryos
9
cf-1 mouse
8
differentiation growth
8
e10 e105
8
embryos presented
8
e10 embryos
8
embryo developmental
4
developmental disruption
4

Similar Publications

ALCAM is an entry factor for severe community acquired Pneumonia-associated Human adenovirus species B.

Nat Commun

December 2024

Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institutes of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University and Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China.

Human adenovirus (HAdV) is a widely spread respiratory pathogen that can cause infections in multiple tissues and organs. Previous studies have established an association between HAdV species B (HAdV-B) infection and severe community-acquired pneumonia (SCAP). However, the connection between SCAP-associated HAdV-B infection and host factor expression profile in patients has not been systematically investigated.

View Article and Find Full Text PDF

Objectives: Little is known about how various treatments impact the progression of interstitial lung disease (ILD) in rheumatoid arthritis (RA) patients. Here, we compared ILD progression in RA patients treated with Janus kinase inhibitors (JAKi) or biological disease-modifying anti-rheumatic drugs (bDMARDs). experiments were also performed to evaluate the potential effects of the drugs on epithelial-mesenchymal transition (EMT), a key event in pulmonary fibrosis.

View Article and Find Full Text PDF

Objective: Patients with non-small cell lung cancer (NSCLC) have poor prognoses. Sulfatase 1 (SULF1) is an extracellular neutral sulfatase and is involved in multiple physiological processes. Hence, this study investigated the function and possible mechanisms of SULF1 in NSCLC.

View Article and Find Full Text PDF

Silencing of STEAP3 suppresses cervical cancer cell proliferation and migration via JAK/STAT3 signaling pathway.

Cancer Metab

December 2024

Department of Obstetrics and Gynecology, First Affiliated Hospital, Shihezi University, Shihezi, China.

Article Synopsis
  • STEAP3 is a critical protein associated with cervical cancer (CC) progression, showing strong expression in CC tissues and linked to poor patient prognosis.
  • The study employed various methods, such as immunohistochemistry and RNA sequencing, to investigate STEAP3's role, revealing that lower methylation levels of STEAP3 are connected to worse outcomes.
  • Knockdown of STEAP3 in CC cells reduced their growth and invasion abilities while enhancing drug sensitivity, suggesting STEAP3 drives cancer cell activity through the activation of the JAK/STAT3 signaling pathway.
View Article and Find Full Text PDF

The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, has evolved resistance to nearly every management tactic utilized in the field. This study investigated the resistance mechanisms in a WCR strain resistant to the Bacillus thuringiensis (Bt) protein eCry3.1Ab using dsRNA to knockdown WCR midgut genes previously documented to be associated with the resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!