We report the observation of liquid-liquid phase separation in a solution of human monoclonal antibody, IgG2, and the effects of human serum albumin, a major blood protein, on this phase separation. We find a significant reduction of phase separation temperature in the presence of albumin, and a preferential partitioning of the albumin into the antibody-rich phase. We provide a general thermodynamic analysis of the antibody-albumin mixture phase diagram and relate its features to the magnitude of the effective interprotein interactions. Our analysis suggests that additives (HSA in this report), which have moderate attraction with antibody molecules, may be used to forestall undesirable protein condensation in antibody solutions. Our findings are relevant to understanding the stability of pharmaceutical solutions of antibodies and the mechanisms of cryoglobulinemia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3189021 | PMC |
http://dx.doi.org/10.1073/pnas.1112241108 | DOI Listing |
Polymers (Basel)
January 2025
Department of Forest and Fire Sciences, University of Idaho, Moscow, ID 83844-1132, USA.
This study investigated the valorization of industrial lignin for producing biodegradable polybutylene succinate (PBS)-lignin copolymers. PBS was blended with varying lignin contents (0-45 wt. %) and crosslinked/grafted using dicumyl peroxide (DCP).
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar.
The development of ultrafiltration (UF) polymeric membranes with high flux and enhanced antifouling properties bridges a critical gap in the polymeric membrane fabrication research field. In the present work, the preparation of novel PES membranes incorporated with carrageenan (CAR), which is a natural polymer derived from edible red seaweed, is reported for the first time. The PES/CAR membranes were prepared by using the nonsolvent-induced phase separation (NIPS) method at 0.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Sanderson Building, King's Buildings, Edinburgh EH9 3FB, UK.
The phase separation of high-density polyethylene (HDPE)-polypropylene (PP) blends was studied using atomic force microscopy in tapping mode to obtain height and phase images. The results are compared with those from scanning electron microscopy imaging and are connected to the thermomechanical properties of the blends, characterised through differential scanning calorimetry, dynamic mechanical analysis (DMA), and tensile testing. Pure PP, as well as 10:90 and 20:80 weight ratio HDPE-PP blends, showed a homogeneous morphology, but the 25:75 HDPE-PP blends exhibited a sub-micrometre droplet-matrix structure, and the 50:50 HDPE-PP blends displayed a more complex co-continuous nano/microphase-separated structure.
View Article and Find Full Text PDFMolecules
January 2025
College of Chemistry & Pharmacy, Northwest A&F University, 22 Xiong Road, Yangling 712100, China.
The separation of large polar constituents presents a substantial challenge in natural product research when employing column chromatography techniques, as the process is both complex and time-consuming. In this study, an acetonitrile/tetrahydrofuran/di-(2-ethylhexyl) phosphoric acid/aqueous saturated sodium chloride solvent system was developed and utilized for the countercurrent chromatography of polar constituents from L. seeds.
View Article and Find Full Text PDFMolecules
January 2025
Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland.
Tellurium, recognized as one of the technology-critical elements, should be considered as a xenobiotic. Its application, i.a.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!