Poly(ADP-ribose) polymerase-2 depletion reduces doxorubicin-induced damage through SIRT1 induction.

Cardiovasc Res

Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Nagyerdei krt 98. Pf. 7, H-4032 Debrecen, Hungary.

Published: December 2011

Aims: Doxorubicin (DOX) is widely used in cytostatic treatments, although it may cause cardiovascular dysfunction as a side effect. DOX treatment leads to enhanced free radical production that in turn causes DNA strand breakage culminating in poly(ADP-ribose) polymerase (PARP) activation and mitochondrial and cellular dysfunction. DNA nicks can activate numerous enzymes, such as PARP-2. Depletion of PARP-2 has been shown to result in a protective phenotype against free radical-mediated diseases, suggesting similar properties in the case of DOX-induced vascular damage.

Methods And Results: PARP-2(+/+) and PARP-2(-/-) mice and aortic smooth muscle (MOVAS) cells were treated with DOX (25 mg/kg or 3 μM, respectively). Aortas were harvested 2-day post-treatment while MOVAS cells were treated with DOX for 7 hours. Aortas from PARP-2(-/-) mice displayed partial protection against DOX toxicity, and the protection depended on the conservation of smooth muscle but not on the conservation of endothelial function. DOX treatment evoked free radical production, DNA breakage and PARP activation. Importantly, depletion of PARP-2 did not quench any of these phenomena, suggesting an alternative mechanism. Depletion of PARP-2 prevented DOX-induced mitochondrial dysfunction through SIRT1 activation. Genetic deletion of PARP-2 resulted in the induction of the SIRT1 promoter and consequently increased SIRT1 expression both in aortas and in MOVAS cells. SIRT1 activation enhanced mitochondrial biogenesis, which provided protection against DOX-induced mitochondrial damage.

Conclusion: Our data identify PARP-2 as a mediator of DOX toxicity by regulating vascular SIRT1 activity and mitochondrial biogenesis. Moreover, to the best of our knowledge, this is the first report of SIRT1 as a protective factor in the vasculature upon oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvr246DOI Listing

Publication Analysis

Top Keywords

depletion parp-2
12
movas cells
12
dox treatment
8
free radical
8
radical production
8
parp activation
8
parp-2-/- mice
8
smooth muscle
8
cells treated
8
treated dox
8

Similar Publications

Aims: Poly (ADP-ribose) polymerase (PARP) has been extensively investigated in human cancers. Recent studies verified that current available PARP inhibitors (Olaparib or Veliparib) provided clinical palliation of clinical patients suffering from paclitaxel-induced neuropathic pain (PINP). However, the underlying mechanism of PARP overactivation in the development of PINP remains to be investigated.

View Article and Find Full Text PDF

Poly (ADP-ribose) polymerase (PARP)-1 and PARP-2 regulate the function of various DNA-interacting proteins by transferring ADP-ribose emerging from catalytic cleavage of cellular β-NAD. Hence, mice lacking PARP-1 or PARP-2 show DNA perturbations ranging from altered DNA integrity to impaired DNA repair. These effects stem from the central role that PARP-1 and PARP-2 have on the cellular response to DNA damage.

View Article and Find Full Text PDF

Poly(ADP-ribose)polymerases (PARPs) are a family of NAD+ consuming enzymes that play a crucial role in many cellular processes, most clearly in maintaining genome integrity. Here, we present an extensive analysis of the alteration of mitochondrial morphology and the relationship to PARPs activity after oxidative stress using an in vitro model of human hepatic cells. The following outcomes were observed: reactive oxygen species (ROS) induced by oxidative treatment quickly stimulated PARPs activation, promoted changes in mitochondrial morphology associated with early mitochondrial fragmentation and energy dysfunction and finally triggered apoptotic cell death.

View Article and Find Full Text PDF

PARP-1 and PARP-2 activity in cancer-induced cachexia: potential therapeutic implications.

Biol Chem

January 2018

Respiratory Medicine Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institute of Medical Research of Hospital del Mar (IMIM)-Hospital del Mar, Parc de Salut Mar, Barcelona Biomedical Research Park (PRBB), Barcelona, Spain.

Skeletal muscle dysfunction and mass loss is a characteristic feature in patients with chronic diseases including cancer and acute conditions such as critical illness. Maintenance of an adequate muscle mass is crucial for the patients' prognosis irrespective of the underlying condition. Moreover, aging-related sarcopenia may further aggravate the muscle wasting process associated with chronic diseases and cancer.

View Article and Find Full Text PDF

Poly(ADP-ribose) polymerase-2 (PARP-2) activity contributes to a cells' poly(ADP-ribosyl)ating potential and like PARP-1, has been implicated in several DNA repair pathways including base excision repair and DNA single strand break repair. Here the consequences of its stable depletion in HeLa, U20S, and AS3WT2 cells were examined. All three PARP-2 depleted models showed increased sensitivity to the cell killing effects on ionizing radiation as reported in PARP-2 depleted mouse embryonic fibroblasts providing further evidence for a role in DNA strand break repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!