High temporal resolution decoding of object position and category.

J Vis

Department of Psychology, University of Maryland, College Park, MD 20742, USA.

Published: September 2011

We effortlessly and seemingly instantaneously recognize thousands of objects, although we rarely--if ever--see the same image of an object twice. The retinal image of an object can vary by context, size, viewpoint, illumination, and location. The present study examined how the visual system abstracts object category across variations in retinal location. In three experiments, participants viewed images of objects presented to different retinal locations while brain activity was recorded using magnetoencephalography (MEG). A pattern classifier was trained to recover the stimulus position (Experiments 1, 2, and 3) and category (Experiment 3) from the recordings. Using this decoding approach, we show that an object's location in the visual field can be recovered in high temporal resolution (5 ms) and with sufficient fidelity to capture topographic organization in visual areas. Experiment 3 showed that an object's category could be recovered from the recordings as early as 135 ms after the onset of the stimulus and that category decoding generalized across retinal location (i.e., position invariance). Our experiments thus show that the visual system rapidly constructs a category representation for objects that is invariant to position.

Download full-text PDF

Source
http://dx.doi.org/10.1167/11.10.9DOI Listing

Publication Analysis

Top Keywords

high temporal
8
temporal resolution
8
image object
8
visual system
8
retinal location
8
category
6
resolution decoding
4
object
4
decoding object
4
position
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!