The spatial organisation of swelling clay platelets in a suspension depends on the chemical composition of the equilibration solution. Individual clay platelets can be well dispersed, with surfaces entirely in contact with the external solution, or be stacked in tactoids, where part of the surfaces forms parallel alignments embedding interlayer water and cations. External and interlayer surfaces do not exhibit similar affinities for cations having different hydration and charge properties and the clay platelet stacking arrangement influences the clay affinity for these cations. This paper aims to establish the link between exchange properties and clay tactoid size and organisation for Na-Ca exchange on montmorillonite. Different montmorillonite samples behave differently with regards to Na-Ca exchange, from ideal to non-ideal exchange behaviour. A simple model coupling the tactoid stacking size to different Na/Ca relative affinities of the external and interlayer clay surfaces enables these differences to be reproduced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2011.07.039 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!