Tetherin, a recently identified interferon (IFN)-inducible, type 2 transmembrane protein, has been shown to be a cellular antiviral restriction factor that retains newly formed virions in infected cells. Thus, tetherin plays an important role in the innate cell-autonomous immune response. The aim of this study was to examine the antiviral activities of tetherin in vesicular stomatitis virus infections of murine neuronal cells. Both IFN-β and IFN-γ induce the expression of tetherin mRNA and protein. Tetherin knockdown experiments were carried out by transfection of tethrin shRNA into murine neuroblastoma cells using a vector containing the pCMV-driven tGFP gene. The efficiency of transfection was monitored through GFP expression by the transfected cells. Selected transfected cells were used for further mRNA and protein analysis, fluorescent immunocytolocalization, and viral infection to study the impact of tetherin knockdown. Our research indicates that tetherin is expressed on the outer face of the plasma membrane of murine neuroblastoma cells, its expression can be induced with both IFN-γ and IFN-β, and tetherin restricts progeny virus release up to 100-fold in mammalian neurons, thus contributing to a potent antiviral state within the host cell.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233914PMC
http://dx.doi.org/10.1089/dna.2011.1384DOI Listing

Publication Analysis

Top Keywords

tetherin restricts
8
vesicular stomatitis
8
stomatitis virus
8
virus release
8
tetherin
8
mrna protein
8
tetherin knockdown
8
murine neuroblastoma
8
neuroblastoma cells
8
transfected cells
8

Similar Publications

The Role of Bone Marrow Stromal Cell Antigen 2 (BST2) in the Migration of Dendritic Cells to Lymph Nodes.

Int J Mol Sci

December 2024

College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.

Bone marrow stromal antigen 2 (BST2) is a host-restriction factor that plays multiple roles in the antiviral defense of innate immune responses, including the inhibition of viral particle release from virus-infected cells. BST2 may also be involved in the endothelial adhesion and migration of monocytes, but its importance in the immune system is still unclear. Immune cell adhesion and migration are closely related to the initiation of immune responses.

View Article and Find Full Text PDF

Human respiratory syncytial virus (RSV) is an enveloped RNA virus and the leading viral agent responsible for severe pediatric respiratory infections worldwide. Identification of cellular factors able to restrict viral infection is one of the key strategies used to design new drugs against infection. Here, we report for the first time that the cellular protein BST2/Tetherin (a widely known host antiviral molecule) behaves as a restriction factor of RSV infection.

View Article and Find Full Text PDF

Different host proteins target different HIV proteins and antagonize their functions, depending on the stage of the HIV life cycle and the stage of infection. Concurrently, HIV proteins also target and antagonize various different host proteins to facilitate HIV replication within host cells. The preceding quite specific area of knowledge in HIV pathogenesis, however, remains insufficiently understood.

View Article and Find Full Text PDF

A heterocyclic compound inhibits viral release by inducing cell surface BST2/Tetherin/CD317/HM1.24.

J Biol Chem

September 2024

Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan. Electronic address:

The introduction of combined antiretroviral therapy (cART) has greatly improved the quality of life of human immunodeficiency virus type 1 (HIV-1)-infected individuals. Nonetheless, the ever-present desire to seek out a full remedy for HIV-1 infections makes the discovery of novel antiviral medication compelling. Owing to this, a new late-stage inhibitor, Lenacapavir/Sunlenca, an HIV multi-phase suppressor, was clinically authorized in 2022.

View Article and Find Full Text PDF

Extensive studies on HIV-1 have led to the discovery of a variety of structurally and functionally diverse innate defense factors that target various steps of the retroviral replication cycle. Some of them, such as APOBEC3, tetherin, and SERINC5, are well established. Their importance is evident from the fact that HIV-1 uses its accessory proteins Vif, Vpu, and Nef to counteract them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!