A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Growth kinetics of amyloid-like fibrils derived from individual subunits of soy β-conglycinin. | LitMetric

Growth kinetics of amyloid-like fibrils derived from individual subunits of soy β-conglycinin.

J Agric Food Chem

Department of Food Science and Technology, South China University of Technology, Guangzhou 510640, People's Republic of China.

Published: October 2011

The amyloid-like fibrillation of soy β-conglycinin subunits (α, α', and β) upon heating (0-20 h) at 85 °C and pH 2.0 was characterized using dynamic light scattering, circular dichroism (CD), binding to amyloid dyes (Thioflavin T and Congo red), and atomic force microscopy. The fibrillation of all three subunits was accompanied by progressive polypeptide hydrolysis. The hydrolysis behaviors, fibrillation kinetics, and morphologies of amyloid-like fibrils considerably varied among α, α', and β subunits. Faster hydrolysis rates and special fragments were observed for the α and α' subunits compared to the β subunit. However, the order of the fibrillation rate and capacity to form β-sheets was α' > β > α, as evidenced by CD and Thioflavin T data. Moreover, sequential growth of twisted screw-structure fibrils, leading to macroscopic fibrils with distinct morphological characteristics, was observed for β-conglycinin and individual subunits. The different fibrillation kinetics and morphologies of α, α', and β subunits appear to be associated with the differences in the amino acid composition and typical sequence of peptides. Besides, the disruption of ordered structure of fibrils occurred upon further heating (6-20 h) due to extensive hydrolysis. These results would suggest that all subunits are involved in the fibrillation of β-conglycinin, following multiple steps including polypeptide hydrolysis, assembly to amyloid structure, and growth into macroscopic fibrils with a fibril shaving process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf202541mDOI Listing

Publication Analysis

Top Keywords

α' subunits
12
amyloid-like fibrils
8
subunits
8
individual subunits
8
soy β-conglycinin
8
polypeptide hydrolysis
8
fibrillation kinetics
8
kinetics morphologies
8
macroscopic fibrils
8
fibrils
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!