Nanoporous polyethylene thin films templated by polymeric bicontinuous microemulsions: evolution of morphology on non-neutral substrates.

ACS Appl Mater Interfaces

Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA.

Published: October 2011

Polymeric bicontinuous microemulsions (BμE), found in well-designed ternary blends of two homopolymers and a diblock copolymer, have been extensively studied in the bulk, for example, as versatile templates for the synthesis of nanoporous materials. However, there have been few reports regarding BμE-forming blends as films and the potential impact of confinement on the morphology of such blends. We have investigated the morphology of ternary blends of polyethylene (PE), poly(ethylene-alt-propylene) (PEP), and poly(ethylene-b-ethylene-alt-propylene) (PE-PEP) on a variety of substrates. The films were rendered nanoporous by selective extraction of the PEP component, which also created contrast for scanning electron microscopy (SEM). Blends that form BμEs in the bulk were found to undergo an evolution of morphology from a BμE to a macro-phase separated state, induced by the segregation of blend components to the film interfaces. The dynamics of the transformation are accelerated by decreasing film thickness. The results presented indicate that BμEs can be kinetically trapped on arbitrary substrates, which has important implications for the production of bicontinuous, nanoporous films.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am2009794DOI Listing

Publication Analysis

Top Keywords

polymeric bicontinuous
8
bicontinuous microemulsions
8
evolution morphology
8
ternary blends
8
blends
5
nanoporous
4
nanoporous polyethylene
4
polyethylene thin
4
films
4
thin films
4

Similar Publications

Tough Polyurethane Hydrogels with a Multiple Hydrogen-Bond Interlocked Bicontinuous Phase Structure Prepared by In Situ Water-Induced Microphase Separation.

Adv Mater

December 2024

Engineering Research Center of Energy Storage Materials and Devices Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China.

Hydrogels with mechanical performances similar to load-bearing tissues are in demand for in vivo applications. In this work, inspired by the self-assembly behavior of amphiphilic polymers, polyurethane-based tough hydrogels with a multiple hydrogen-bond interlocked bicontinuous phase structure through in situ water-induced microphase separation strategy are developed, in which poly(ethylene glycol)-based polyurethane (PEG-PU, hydrophilic) and poly(ε-caprolactone)-based polyurethane (PCL-PU, hydrophobic) are blended to form dry films followed by water swelling. A multiple hydrogen bonding factor, imidazolidinyl urea, is introduced into the synthesis of the two polyurethanes, and the formation of multiple hydrogen bonds between PEG-PU and PCL-PU can promote homogeneous microphase separation for the construction of bicontinuous phase structures in the hydrogel network, by which the hydrogel features break strength of 12.

View Article and Find Full Text PDF

Despite having several advantages, bicontinuously structured polymeric nanoparticles (BSPNPs) are far less explored in the field of controlled drug delivery owing to the requirement of complex precursor copolymers and the associated multistep synthetic procedures. In this work, we report the synthesis of a redox-sensitive diblock copolymer (P1), which was subsequently utilized to prepare doxorubicin (DOX) containing a pH-labile prodrug (P2). P1 and P2 spontaneously self-assembled in aqueous media above their critical aggregation concentration, forming micellar nanoparticles with rare bicontinuous morphology that promotes loading of both hydrophobic and hydrophilic cargoes in different compartments.

View Article and Find Full Text PDF

Deep eutectic solvent (DES)-based eutectogels show significant promise for flexible sensors due to their high ionic conductivity, non-volatility, biocompatibility, and cost-effectiveness. However, achieving tough and stretchable eutectogels is challenging, as the highly polar DES tends to screen noncovalent bonds, such as hydrogen and ionic bonds, between polymer chains, limiting their mechanical strength. In this work, this issue is addressed by leveraging the limited solubility of zwitterionic polymers in a specific DES to induce phase separation, promoting dipole-dipole interactions between polymer chains.

View Article and Find Full Text PDF

Improving Thermo-Sealing of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Blending with Polycaprolactone.

Polymers (Basel)

November 2024

Instituto Universitario de Ingeniería de Alimentos (FoodUPV), Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain.

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a biodegradable biopolymer from the PHAs family that has potential to replace conventional plastics and reduce plastic pollution. However, PHBV has thermo-sealability issues, making it challenging to use for bags. Blending it with polycaprolactone (PCL) could address this but may alter the barrier properties of the films, affecting their effectiveness as food packaging material.

View Article and Find Full Text PDF

Acid-Induced in Situ Phase Separation and Percolation for Constructing Bi-Continuous Phase Hydrogel Electrodes With Motion-Insensitive Property.

Adv Mater

December 2024

State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.

Conducting polymer hydrogels have gained attention in the bioelectronics field due to their unique combination of biocompatibility and customizable mechanical properties. However, achieving both excellent conductivity and mechanical strength in a hydrogel remains a significant challenge, primarily because of the inherent conflict between the hydrophobic nature of conducting polymers and the hydrophilic characteristics of hydrogels. To address this issue, this work proposes a simple one-step acid-induced approach that not only promotes the gelation of hydrophilic polymers but also facilitates the in situ phase separation of hydrophobic conducting polymers under mild conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!