The present study was performed to identify biomarkers for exposure of benzene in blood cells and hematopoietic tissues. Peripheral mononuclear cells, hematopoietic stem cells, and leukemia cell lines were cultured in RPMI 1640 media with the addition of 0, 1, and 10 mM of benzene. Hydrogen peroxide was measured using an enzyme immunoassay. Mitochondrial mass, membrane potential, and mitochondrial DNA (mtDNA) copy number were measured using MitoTracker Green/Red probes, and real-time polymerase chain reaction. In addition, two-dimensional gel electrophoresis and mass spectrometry matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) technology were performed to identify protein markers. The mitochondrial contents and membrane potentials were dramatically increased after three weeks of direct benzene exposure. The hydrogen peroxide level increased significantly after two weeks of treatment with benzene (4.4 ± 1.9 µM/mg protein) compared to the non-benzene treatment group (1.2 ± 1.0; p = 0.001). The mtDNA copy number gradually increased after exposure to benzene. Numerous protein markers showed significant aberrant expression after exposure to benzene. Among them, the heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 was markedly decreased after exposure to benzene. Thus, increased mitochondrial mass, mtDNA copy number, and the hnRNP A2/B1 protein were biomarkers for benzene-related toxicity and hematotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.675DOI Listing

Publication Analysis

Top Keywords

exposure benzene
20
copy number
16
hnrnp a2/b1
12
mtdna copy
12
mitochondrial dna
8
number hnrnp
8
a2/b1 protein
8
protein biomarkers
8
benzene
8
performed identify
8

Similar Publications

Active phytoextraction of toluene shifts the microbiome and enhances degradation capacity in hybrid poplar.

J Environ Manage

December 2024

School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON, N1H 2W1, Canada. Electronic address:

Hybrid poplars are widely recognized for their effectiveness in remediating subsurface aromatic hydrocarbon contaminants, including benzene, toluene, ethylbenzene, and xylene isomers (BTEX). While BTEX compounds are frequently found in the transpiration streams of poplars at contaminated sites, the microbial dynamics within these trees, particularly in response to hydrocarbon exposure, remain underexplored. This study utilized high-throughput amplicon sequencing to investigate the trunk microbiome in hybrid poplars at a field-scale toluene phytoremediation site.

View Article and Find Full Text PDF

Occupational exposures are generally complex, workers are exposed with more than one hazardous agent in work environment. Combined exposure to noise and benzene is common in occupational environments. Sub-acute exposure to benzene vapors can induce oxidative stress in serum.

View Article and Find Full Text PDF

Background: Despite evidence from experimental studies linking some petroleum hydrocarbons to markers of immune suppression, limited epidemiologic research exists on this topic.

Objective: The aim of this cross-sectional study was to examine associations of oil spill related chemicals (benzene, toluene, ethylbenzene, xylene, and n-hexane (BTEX-H)) and total hydrocarbons (THC) with immune-related illnesses as indicators of potential immune suppression.

Methods: Subjects comprised 8601 Deepwater Horizon (DWH) oil spill clean-up and response workers who participated in a home visit (1-3 years after the DWH spill) in the Gulf Long-term Follow-up (GuLF) Study.

View Article and Find Full Text PDF

Diethylnitrosamine (DEN), a common dietary carcinogen, is associated with neurotoxicity in humans and animals. This study investigated the neuroprotective effects of diphenyl diselenide (DPDS) against DEN-induced neurotoxicity in male Albino Wistar rats (n = 40). Rats were randomly distributed into cohorts and treated as follows: vehicle control (corn oil 2 mL/kg; gavage), DPDS-only (5 mg/kg; gavage) and DEN-only (200 mg/kg; single dose i.

View Article and Find Full Text PDF

Environmental exposures to volatile organic compound (VOC) mixtures have received increasing attention, yet the risks are under studied. This study aimed to explore the risks of combined exposures to several commonly detected VOCs and to draw attention to the necessity of studying long-term and low-concentration environmental exposure patterns. In this study, we examined the effects of long-term and low-concentration exposures to VOCs like 1,2-dichlorobenzene, benzene, toluene and formaldehyde either alone or in combination on D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!