Background: Castration-resistant prostate cancer (CRPC) represents a therapeutic challenge for current medications.
Methods: In order to explore the molecular mechanisms involved in CRPC progression and to identify new therapeutic targets, we analyzed a unique sample set of 11 CRPCs and 7 advanced tumors by array-CGH and gene expression microarrays. The genome-wide DNA and RNA data were integrated to identify genes whose overexpression was driven by their amplification. To assess the functional role of these genes, their expression was analyzed in a transcriptional data set of 329 clinical prostate cancers and the corresponding gene products were silenced using RNA interference in prostate cancer cells.
Results: Six recurrent genetic targets were identified in the CRPCs; ATP1B1, AR, FAM110B, LAS1L, MYC, and YIPF6. In addition to AR and MYC, FAM110B emerged as a potential key gene involved in CRPC progression in a subset of the tumors. FAM110B was able to regulate AR signaling in prostate cancer cells and FAM110B itself was regulated by androgens. FAM110B siRNA inhibited the growth of prostate cancer cells in vitro, and this effect was substantially enhanced in androgen deficient conditions. Ectopic FAM110B expression in non-cancerous epithelial prostate cells induced aneuploidy and impaired antigen presentation.
Conclusions: The DNA/RNA gene outlier detection combined with siRNA cell proliferation assay identified FAM110B as a potential growth promoting key gene for CRPC. FAM110B appears to have a key role in the androgen signaling and progression of CRPC impacting multiple cancer hallmarks and therefore highlighting a potential therapeutic target.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pros.21487 | DOI Listing |
Cell Mol Biol (Noisy-le-grand)
January 2025
Al Door Technical Institute, Northern Technical University, Mosul, Iraq.
Prostate cancer is the most common type after the age of fifty. It affects males and affects the prostate gland, which protects the function of sperm by producing semen. The current study was designed to evaluate prostate cancer infection effects on some biomarkers such as irisin, Tumor necrosis factor-TNF-α, prostate acid phosphates -PAP, Glutathione-GSH, malondialdehyde-MDA, urea, and creatinine.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Departamento de Biología Molecular y Genómica y Departamento de Disciplinas Filosófico Metodológicas e Instrumentales. Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México.
ABCG2 transporter protein is one of several markers of prostate cancer stem cells (PCSCs). Gene variants of ABCG2 could affect protein expression, function, or both. The aim of this study was to identify the genetic variability of the ABCG2 gene in Mexican patients with prostate cancer.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Medical Biology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey.
Chemotherapy is a potent tool against cancer, but drug resistance remains a major obstacle. To combat this, understanding the molecular mechanisms behind resistance in cancer cells and the protein expression changes driving these mechanisms is crucial. Targeting the Ubiquitin-Proteasome System (UPS) has proven effective in treating multiple myeloma and shows promise for solid tumours.
View Article and Find Full Text PDFEur Urol
January 2025
Eastern Health Clinical School, Monash University, Melbourne, Australia; Cancer Services, Eastern Health, Melbourne, Australia; Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia.
Eur Urol
January 2025
Unit of Urology/Division of Oncology, Gianfranco Soldera Prostate Cancer Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy; "Vita-Salute" San Raffaele University, Milan, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!