Many herpesviral immediate-early proteins promote their robust lytic phase replications by hijacking the cell cycle machinery. Previously, lytic replication of Epstein-Barr virus (EBV) was found to be concurrent with host cell cycle arrest. In this study, we showed that ectopic expression of EBV immediate-early protein Rta in HEp-2 cells resulted in increased G1/S population, hypophosphorylation of pRb and decreased incorporation of 5-bromo-2'-deoxyuridine. In addition, EBV Rta transcriptionally upregulates the expressions of p21 and 14-3-3σ in HEp-2 cells, 293 cells and nasopharyngeal carcinoma TW01 cells. Although p21 and 14-3-3σ are known targets for p53, Rta-mediated p21 and 14-3-3σ transactivation can be detected in the absence of p53. In addition, results from luciferase reporter assays indicated that direct binding of Rta to either promoter sequences is not required for activation. On the other hand, a special class of Sp1-responsive elements was involved in Rta-mediated transcriptional activation on both promoters. Finally, Rta-induced p21 expression diminished the activity of CDK2/cyclin E complex, and, Rta-induced 14-3-3σ expression sequestered CDK1 and CDK2 in the cytoplasm. Based on these results, we hypothesize that through the disruption of CDK1 and CDK2 activities, EBV Rta might contribute to cell cycle arrest in EBV-infected epithelial cells during viral reactivation.

Download full-text PDF

Source
http://dx.doi.org/10.1099/vir.0.034405-0DOI Listing

Publication Analysis

Top Keywords

p21 14-3-3σ
16
cell cycle
12
epstein-barr virus
8
cycle arrest
8
hep-2 cells
8
ebv rta
8
cdk1 cdk2
8
cells
6
p21
5
14-3-3σ
5

Similar Publications

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

Breast cancer patients experience more severe emotional distress and depression compared to those with other cancers. Selective serotonin reuptake inhibitors (SSRIs), like citalopram, are commonly used to treat depression. However, the link between SSRI use and breast cancer progression is debated.

View Article and Find Full Text PDF

Background And Aims: Oncogenic KRAS mutations are present in approximately 90% of pancreatic ductal adenocarcinoma (PDAC). However, Kras mutation alone is insufficient to transform precancerous cells into metastatic PDAC. This study investigates how KRAS-mutated epithelial cells acquire the capacity to escape senescence or even immune clearance, thereby progressing to advanced PDAC.

View Article and Find Full Text PDF

KEAP1 mutations as key crucial prognostic biomarkers for resistance to KRAS-G12C inhibitors.

J Transl Med

January 2025

Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

Background: KRAS-G12C inhibitors mark a notable advancement in targeted cancer therapies, yet identifying predictive biomarkers for treatment efficacy and resistance remains essential for optimizing clinical outcomes.

Methods: This systematic meta-analysis synthesized studies available through September 2024 across PubMed, Cochrane Library, SpringerLink, and Embase. Using CRISPR/Cas9 technology, this study generated cells with KEAP1 and STK11 knockouts, and utilized lentiviral vectors to overexpress PD-L1.

View Article and Find Full Text PDF

Cellular senescence is an essentially irreversible cell cycle arrest associated with upregulated inflammatory responses that contribute to various pathological and physiological processes, including aging, cancer, and cancer prevention. However, the underlying mechanisms are not fully understood. Here, we show that the downregulation of CNOT3, a subunit of the CCR4-NOT complex that deadenylates mRNA poly(A) tails, promotes cellular senescence in subpopulation of A549 human non-small cell lung cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!