A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Systems virology identifies a mitochondrial fatty acid oxidation enzyme, dodecenoyl coenzyme A delta isomerase, required for hepatitis C virus replication and likely pathogenesis. | LitMetric

We previously employed systems biology approaches to identify the mitochondrial fatty acid oxidation enzyme dodecenoyl coenzyme A delta isomerase (DCI) as a bottleneck protein controlling host metabolic reprogramming during hepatitis C virus (HCV) infection. Here we present the results of studies confirming the importance of DCI to HCV pathogenesis. Computational models incorporating proteomic data from HCV patient liver biopsy specimens recapitulated our original predictions regarding DCI and link HCV-associated alterations in cellular metabolism and liver disease progression. HCV growth and RNA replication in hepatoma cell lines stably expressing DCI-targeting short hairpin RNA (shRNA) were abrogated, indicating that DCI is required for productive infection. Pharmacologic inhibition of fatty acid oxidation also blocked HCV replication. Production of infectious HCV was restored by overexpression of an shRNA-resistant DCI allele. These findings demonstrate the utility of systems biology approaches to gain novel insight into the biology of HCV infection and identify novel, translationally relevant therapeutic targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3209311PMC
http://dx.doi.org/10.1128/JVI.05605-11DOI Listing

Publication Analysis

Top Keywords

fatty acid
12
acid oxidation
12
mitochondrial fatty
8
oxidation enzyme
8
enzyme dodecenoyl
8
dodecenoyl coenzyme
8
coenzyme delta
8
delta isomerase
8
hepatitis virus
8
systems biology
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!