Since research on plant interactions with herbivores and pathogens is often constrained by the analysis of already known compounds, there is a need to identify new defense-related plant metabolites. The uncommon nonprotein amino acid N(δ)-acetylornithine was discovered in a targeted search for Arabidopsis thaliana metabolites that are strongly induced by the phytohormone methyl jasmonate (MeJA). Stable isotope labeling experiments show that, after MeJA elicitation, Arg, Pro, and Glu are converted to Orn, which is acetylated by NATA1 to produce N(δ)-acetylornithine. MeJA-induced N(δ)-acetylornithine accumulation occurs in all tested Arabidopsis accessions, other Arabidopsis species, Capsella rubella, and Boechera stricta, but not in less closely related Brassicaceae. Both insect feeding and Pseudomonas syringae infection increase NATA1 expression and N(δ)-acetylornithine accumulation. NATA1 transient expression in Nicotiana tabacum and the addition of N(δ)-acetylornithine to an artificial diet both decrease Myzus persicae (green peach aphid) reproduction, suggesting a direct toxic or deterrent effect. However, since broad metabolic changes that are induced by MeJA in wild-type Arabidopsis are attenuated in a nata1 mutant strain, there may also be indirect effects on herbivores and pathogens. In the case of P. syringae, growth on a nata1 mutant is reduced compared with wild-type Arabidopsis, but growth in vitro is unaffected by N(δ)-acetylornithine addition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203426 | PMC |
http://dx.doi.org/10.1105/tpc.111.088989 | DOI Listing |
Hortic Res
January 2025
State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China.
Although plant secretory tissues play important roles in host defense against herbivores and pathogens and the attraction of insect pollinators, their genetic control remains elusive. Here, it is focused that current progress has been made in the genetic regulatory mechanisms underpinning secretory tissue development in land plants. C1HDZ transcription factors (TFs) are found to play crucial roles in the regulation of internal secretory tissues in liverworts and as well as external secretory tissues in peach.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
Glucose-6-phosphate isomerase (PGI), a key enzyme that catalyzes the reversible conversion of glucose-6-phosphate and fructose-6-phosphate, plays an important role in plant growth, development, and responses to abiotic stresses and pathogen infections. However, whether and how PGI modulates herbivore-induced plant defenses remain largely unknown. The Brown planthopper (BPH, ) is a devastating insect pest of rice, causing significant damage to rice plants through feeding, oviposition, and disease transmission, resulting in great yield losses.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
Plants depend heavily on efficient nutrient uptake and utilization for optimal growth and development. However, plants are constantly subjected to a diverse array of biotic stresses, such as pathogen infections, insect pests, and herbivory, as well as abiotic stress like drought, salinity, extreme temperatures, and nutrient imbalances. These stresses significantly impact the plant's ability to take up nutrient and use it efficiency.
View Article and Find Full Text PDFNew Phytol
January 2025
State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
The effects of drought stress on stomatal opening dynamics, plant volatile organic compound (VOC) emissions and plant-insect interactions have been well-documented individually, but how they interact mechanistically remains poorly studied. Here, we studied how drought-triggered stomatal closure affects VOC emission and plant-trophic interactions by combining RNAi silencing, molecular biological and chemical analyses (GC-MS) of a potato-tuber moth-egg parasitoid tritrophic system. Drought stress attenuated stomatal apertures and VOC emissions, which made the potato (Solanum tuberosum L.
View Article and Find Full Text PDFNat Commun
January 2025
State key laboratory of rice biology and breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
Feeding and oviposition by phytophagous insects are both known to trigger defenses in plants. Whether these two defenses functionally interact remains poorly studied, although these interactions are likely important for pests with overlapping generations. Here we investigated the differences and interaction between feeding- and oviposition-induced plant defenses triggered by the brown planthopper (BPH, Nilaparvata lugens), which gregariously feeds and oviposits on rice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!