A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel approach for improved tractography and quantitative analysis of probabilistic fibre tracking curves. | LitMetric

This paper presents a novel approach for improved diffusion tensor fibre tractography, aiming to tackle a number of the limitations of current fibre tracking algorithms, and describes a quantitative analysis tool for probabilistic tracking algorithms. We consider the sampled random paths generated by a probabilistic tractography algorithm from a seed point as a set of curves, and develop a statistical framework for analysing the curve-set geometrically that finds the average curve and dispersion measures of the curve-set statistically. This study is motivated firstly by the goal of developing a robust fibre tracking algorithm, combining the power of both deterministic and probabilistic tracking methods using average curves. These typical curves produce strong connections to every anatomically distinct fibre tract from a seed point and also convey important information about the underlying probability distribution. These single well-defined trajectories overcome a number of the limitations of deterministic and probabilistic approaches. A new clustering algorithm for branching curves is employed to separate fibres into branches before applying the averaging methods. Secondly, a quantitative analysis tool for probabilistic tracking methods is introduced using statistical measures of curve-sets. Results on phantom and in vivo data confirm the efficiency and effectiveness of the proposed approach for the tracking algorithm and the quantitative analysis of the probabilistic methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2011.07.005DOI Listing

Publication Analysis

Top Keywords

quantitative analysis
16
fibre tracking
12
probabilistic tracking
12
novel approach
8
approach improved
8
analysis probabilistic
8
number limitations
8
tracking algorithms
8
analysis tool
8
tool probabilistic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!