In many biochemical processes, proteins need to bind partners amidst a sea of other molecules. Generally, partner selection is achieved by formation of a single-orientation complex with well-defined, short-range interactions. We describe a protein network that functions effectively in a metabolic electron transfer process but lacks such specific interactions. The soil bacterium Paracoccus denitrificans oxidizes a variety of compounds by channeling electrons into the main respiratory pathway. Upon conversion of methylamine by methylamine dehydrogenase, electrons are transported to the terminal oxidase to reduce molecular oxygen. Steady-state kinetic measurements and NMR experiments demonstrate a remarkable number of possibilities for the electron transfer, involving the cupredoxin amicyanin as well as four c-type cytochromes. The observed interactions appear to be governed exclusively by the electrostatic nature of each of the proteins. It is concluded that Paracoccus provides a pool of cytochromes for efficient electron transfer via weak, ill-defined interactions, in contrast with the view that functional biochemical interactions require well-defined molecular interactions. It is proposed that the lack of requirement for specificity in these interactions might facilitate the integration of new metabolic pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja205043fDOI Listing

Publication Analysis

Top Keywords

electron transfer
16
efficient electron
8
protein network
8
interactions
8
specific interactions
8
transfer
4
transfer protein
4
network lacking
4
lacking specific
4
interactions biochemical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!