Background: Streptococcus pneumoniae has two paralogous, homotetrameric, single-stranded DNA binding (SSB) proteins, designated SsbA and SsbB. Previous studies demonstrated that SsbA and SsbB have different solution-dependent binding mode preferences with variable DNA binding capacities. The impact of these different binding properties on the assembly of multiple SsbAs and SsbBs onto single-stranded DNA was investigated.
Methodology/principal Findings: The complexes that were formed by the SsbA and SsbB proteins on dT(n) oligomers of defined lengths were examined by polyacrylamide gel electrophoresis. Complexes containing either two SsbAs or two SsbBs, or mixed complexes containing one SsbA and one SsbB, could be formed readily, provided the dT(n) oligomer was long enough to satisfy the full binding mode capacities of each of the bound proteins under the particular solution conditions. Complexes containing two SsbAs or two SsbBs could also be formed on shorter dT(n) oligomers via a "shared-strand binding" mechanism in which one or both proteins were bound using only a portion of their potential binding capacity. Mixed complexes were not formed on these shorter oligomers, however, indicating that SsbA and SsbB were incompatible for shared-strand binding. Additional experiments suggested that this shared-strand binding incompatibility may be due in part to differences in the structure of a loop region on the outer surface of the subunits of the SsbA and SsbB proteins.
Conclusion/significance: These results indicate that the SsbA and SsbB proteins may co-assemble on longer DNA segments where independent binding is possible, but not on shorter DNA segments where coordinated interactions between adjacent SSBs are required. The apparent compatibility requirement for shared-strand binding could conceivably serve as a self-recognition mechanism that regulates the manner in which SsbA and SsbB interact in S. pneumoniae.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3168475 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0024305 | PLOS |
Int J Biol Macromol
May 2024
Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia. Electronic address:
Single-stranded DNA-binding proteins (SSB) are crucial in DNA metabolism. While Escherichia coli SSB is extensively studied, the significance of its C-terminal domain has only recently emerged. This study explored the significance of C-domains of two paralogous Ssb proteins in S.
View Article and Find Full Text PDFInt J Mol Sci
October 2023
Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan.
Single-stranded DNA-binding proteins (SSBs) play a crucial role in DNA metabolism by binding and stabilizing single-stranded DNA (ssDNA) intermediates. Through their multifaceted roles in DNA replication, recombination, repair, replication restart, and other cellular processes, SSB emerges as a central player in maintaining genomic integrity. These attributes collectively position SSBs as essential guardians of genomic integrity, establishing interactions with an array of distinct proteins.
View Article and Find Full Text PDFMethods Mol Biol
June 2021
School of Biomedical Sciences, Chung Shan Medical University, Taichung City, Taiwan.
Single-stranded DNA (ssDNA)-binding protein (SSB) is essential for DNA metabolic processes. SSB also binds to many DNA-binding proteins that constitute the SSB interactome. The mechanism through which PriA helicase, an initiator protein in the DNA replication restart process, is stimulated by SSB in Escherichia coli (EcSSB) has been established.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2021
School of Biomedical Sciences, Chung Shan Medical University, No.110 Sec.1 Chien-Kuo N. Rd., Taichung City, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, No.110 Sec.1 Chien-Kuo N. Rd., Taichung City, Taiwan. Electronic address:
Single-stranded DNA-binding proteins (SSBs) are essential to cells because they participate in DNA metabolic processes, such as DNA replication, repair, and recombination. Some bacteria possess more than one paralogous SSB. Three similar SSBs, namely, SsbA, SsbB, and SsbC, are found in Staphylococcus aureus.
View Article and Find Full Text PDFEnviron Microbiol
February 2020
Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Street, 28049, Madrid, Spain.
A proteolyzed bacteriophage (phage) might release its DNA into the environment. Here, we define the recombination functions required to resurrect an infective lytic phage from inactive environmental viral DNA in naturally competent Bacillus subtilis cells. Using phage SPP1 DNA, a model that accounts for the obtained data is proposed (i) the DNA uptake apparatus takes up environmental SPP1 DNA, fragments it, and incorporates into the cytosol different linear single-stranded (ss) DNA molecules shorter than genome-length; (ii) the SsbA-DprA mediator loads RecA onto any fragmented linear SPP1 ssDNA, but negative modulators (RecX and RecU) promote a net RecA disassembly from these ssDNAs not homologous to the host genome; (iii) single strand annealing (SSA) proteins, DprA and RecO, anneal the SsbA- or SsbB-coated complementary strands, yielding tailed SPP1 duplex intermediates; (iv) RecA polymerized on these tailed intermediates invades a homologous region in another incomplete molecule, and in concert with RecD2 helicase, reconstitutes a complete linear phage genome with redundant regions at the ends of the molecule; and (v) DprA, RecO or viral G35P SSA, may catalyze the annealing of these terminally redundant regions, alone or with the help of an exonuclease, to produce a circular unit-length duplex viral genome ready to initiate replication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!