Proteoglycans are key components of extracellular matrices, providing structural support as well as influencing cellular behaviour in physiological and pathological processes. The diversity of proteoglycan function reported in the literature is equally matched by diversity in proteoglycan structure. Members of the ADAMTS (A Disintegrin And Metalloproteinase with ThromboSpondin motifs) family of enzymes degrade proteoglycans and thereby have the potential to alter tissue architecture and regulate cellular function. In this review, we focus on ADAMTS enzymes that degrade the lectican and small leucine-rich repeat families of proteoglycans. We discuss the known ADAMTS cleavage sites and the consequences of cleavage at these sites. We illustrate our discussion with examples from the literature in which ADAMTS proteolysis of proteoglycans makes profound changes to tissue function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2011.08.009DOI Listing

Publication Analysis

Top Keywords

diversity proteoglycan
8
enzymes degrade
8
cleavage sites
8
adamts
5
proteoglycan degradation
4
degradation adamts
4
adamts family
4
family proteinases
4
proteoglycans
4
proteinases proteoglycans
4

Similar Publications

Small Leucine-Rich Proteoglycans (SLRPs) are a major family of vertebrate proteoglycans. In bony vertebrates, SLRPs have a variety of functions from structural to signaling and are found in extracellular matrices, notably in skeletal tissues. However, there is little or no data on the diversity, function and expression patterns of SLRPs in cartilaginous fishes, which hinders our understanding of how these genes evolved with the diversification of vertebrates, in particular regarding the early events of whole genome duplications that shaped gnathostome and cyclostome genomes.

View Article and Find Full Text PDF

We present a series of articles proving the existence of a previously unknown mechanism of interaction between hematopoietic stem cells and extracellular double-stranded DNA (and, in particular, double-stranded DNA of the peripheral bloodstream), which explains the possibility of emergence and fixation of genetic information contained in double-stranded DNA of extracellular origin in hematopoietic stem cells. The concept of the possibility of stochastic or targeted changes in the genome of hematopoietic stem cells is formulated based on the discovery of new, previously unknown biological properties of poorly differentiated hematopoietic precursors. The main provisions of the concept are as follows.

View Article and Find Full Text PDF

Background: Intervertebral disc degeneration (IDD) is a progressive age-related disorder characterized by the reduction in the number of nucleus pulposus cells (NPCs) and degradation of extracellular matrix (ECM), thereby leading to chronic pain and disability. The pathogenesis of IDD is multifaceted, and current therapeutic strategies remain limited. The nucleus pulposus (NP), primarily composed of NPCs, proteoglycans, and type II collagen, constitutes essential components for maintaining intervertebral disc (IVD) function and spinal motion.

View Article and Find Full Text PDF

Syndecan-1: a key player in health and disease.

Immunogenetics

December 2024

Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon.

Article Synopsis
  • Syndecan-1 (SDC-1) is a key protein on epithelial cells that plays roles in cell adhesion, interactions with the extracellular matrix, cell cycle regulation, and lipid clearance.
  • Alterations in SDC-1 are linked to various diseases, highlighting its potential as a target for diagnosis and treatment, though many mechanisms behind its functions are still not well understood.
  • This review explores SDC-1's involvement in health and diseases like liver disorders, inflammation, infections, and cancer, aiming to outline future research avenues for targeted therapies and early diagnosis.
View Article and Find Full Text PDF

Uncontrolled and chronic inflammatory states in the Central Nervous System (CNS) are the hallmark of neurodegenerative pathology and every injury or stroke-related insult. The key mediators of these neuroinflammatory states are glial cells known as microglia, the resident immune cell at the core of the inflammatory event, and astroglia, which encapsulate inflammatory insults in proteoglycan-rich scar tissue. Since the majority of neuroinflammation is exclusively based on the responses of said glia, their phenotypes have been identified to be on an inflammatory spectrum encompassing developmental, homeostatic, and reparative behaviors as opposed to their ability to affect devastating cell death cascades and scar tissue formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!