Introduction: The Health Assessment Questionnaire Disability Index (HAQ) and the SF-36 PF-10, among other instruments, yield sensitive and valid Disability (Physical Function) endpoints. Modern techniques, such as Item Response Theory (IRT), now enable development of more precise instruments using improved items. The NIH Patient Reported Outcomes Measurement Information System (PROMIS) is charged with developing improved IRT-based tools. We compared the ability to detect change in physical function using original (Legacy) instruments with Item-Improved and PROMIS IRT-based instruments.
Methods: We studied two Legacy (original) Physical Function/Disability instruments (HAQ, PF-10), their item-improved derivatives (Item-Improved HAQ and PF-10), and the IRT-based PROMIS Physical Function 10- (PROMIS PF 10) and 20-item (PROMIS PF 20) instruments. We compared sensitivity to detect 12-month changes in physical function in 451 rheumatoid arthritis (RA) patients and assessed relative responsiveness using P-values, effect sizes (ES), and sample size requirements.
Results: The study sample was 81% female, 87% Caucasian, 65 years of age, had 14 years of education, and had moderate baseline disability. All instruments were sensitive to detecting change (< 0.05) in physical function over one year. The most responsive instruments in these patients were the Item-Improved HAQ and the PROMIS PF 20. IRT-improved instruments could detect a 1.2% difference with 80% power, while reference instruments could detect only a 2.3% difference (P < 0.01). The best IRT-based instruments required only one-quarter of the sample sizes of the Legacy (PF-10) comparator (95 versus 427). The HAQ outperformed the PF-10 in more impaired populations; the reverse was true in more normal populations. Considering especially the range of severity measured, the PROMIS PF 20 appears the most responsive instrument.
Conclusions: Physical Function scales using item improved or IRT-based items can result in greater responsiveness and precision across a broader range of physical function. This can reduce sample size requirements and thus study costs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3308075 | PMC |
http://dx.doi.org/10.1186/ar3461 | DOI Listing |
Sci Rep
December 2024
Departamento de Física, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Spain.
Considering a universal deep neural network organized as a series of nested qubit rotations, accomplished by adjustable data re-uploads we analyze its expressivity. This ability to approximate continuous functions in regression tasks is quantified making use of a partial Fourier decomposition of the generated output and systematically benchmarked with the aid of a teacher-student scheme. While the maximal expressive power increases with the depth of the network and the number of qubits, it is fundamentally bounded by the data encoding mechanism.
View Article and Find Full Text PDFNat Commun
December 2024
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.
Recent advances have uncovered an exotic sliding ferroelectric mechanism, which endows to design atomically thin ferroelectrics from non-ferroelectric parent monolayers. Although notable progress has been witnessed in understanding the fundamental properties, functional devices based on sliding ferroelectrics remain elusive. Here, we demonstrate the rewritable, non-volatile memories at room-temperature with a two-dimensional (2D) sliding ferroelectric semiconductor of rhombohedral-stacked bilayer MoS.
View Article and Find Full Text PDFSci Rep
December 2024
Chair of Applied Electrodynamics and Plasma Technology, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
Nonlinearity is a crucial characteristic for implementing hardware security primitives or neuromorphic computing systems. The main feature of all memristive devices is this nonlinear behavior observed in their current-voltage characteristics. To comprehend the nonlinear behavior, we have to understand the coexistence of resistive, capacitive, and inertia (virtual inductive) effects in these devices.
View Article and Find Full Text PDFSci Rep
December 2024
Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém, 8200, Hungary.
Ensuring everyone enjoys healthy lifestyles and well-being at all ages, Progress has been made in increasing access to clean water and sanitation facilities and reducing the spread of epidemics and diseases. The synthesis of nano-particles (NPs) by using microalgae is a new nanobiotechnology due to the use of the biomolecular (corona) of microalgae as a capping and reducing agent for NP creation. This investigation explores the capacity of a distinct indigenous microalgal strain to synthesize silver nano-particles (AgNPs), as well as its effectiveness against multi-drug resistant (MDR) bacteria and its ability to degrade Azo dye (Methyl Red) in wastewater.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
B-type natriuretic peptide (BNP) levels accurately reflect the degree of cardiac overload in heart failure. Considering cardiac morphology and intracardiac pressure, including the left ventricular end-systolic volume index (LVESVI) and left ventricular end-diastolic volume index (LVEDVI), is essential for cardiac overload assessment. These indexes influence plasma BNP levels, and high heart rate is likely associated with cardiac morphology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!