193 nm ultraviolet photodissociation of deprotonated sialylated oligosaccharides.

Anal Chem

Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, United States.

Published: November 2011

The fragmentation patterns of deprotonated sialylated oligosaccharides and glycans from fetuin obtained upon collisionally induced dissociation (CID) and 193 nm ultraviolet photodissociation (UVPD) in a linear ion trap are presented. UVPD produced a more extensive series of cross-ring cleavage ions, such as A- and X-type ions, and dual-cleavage internal ions, including A/Y and X/B fragment ions. In addition, UVPD generated unique fragment ions which arise from site-specific cleavage of the triol substituent of the sialic acid residue. In contrast, CID produced more conventional glycosidic cleavages and relatively few A-type ions. UVPD of doubly deprotonated sialylated oligosaccharides produced mostly singly deprotonated fragment ions, whereas the product ions in the CID spectra were overwhelmingly doubly charged ions, an outcome attributed to the more extensive cleavages of sialic acid residues upon UVPD and products from electron photodetachment. The larger array of product ions, including those arising from extensive cross-ring cleavages and dual-cleavage ions, generated by 193 nm UVPD relative to CID gives greater confidence for identification of glycans. Several key site-specific cleavages by UVPD, such as ones involving the sialic acid moieties, provide evidence of glycan composition.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac201751uDOI Listing

Publication Analysis

Top Keywords

deprotonated sialylated
12
sialylated oligosaccharides
12
fragment ions
12
sialic acid
12
ions
11
193 ultraviolet
8
ultraviolet photodissociation
8
ions including
8
product ions
8
uvpd
7

Similar Publications

In this preliminary investigation, a low-grade astrocytoma (AcT) is investigated by high-resolution (HR) mass spectrometry (MS) aiming at characterization of gangliosides with potential biomarker value. The research was conducted towards a comparative mapping of ganglioside expression in AcT, its surrounding tissue (ST) and a normal control brain tissue (NT). HR MS was conducted in the negative ion mode nanoelectrospray ionization (nanoESI).

View Article and Find Full Text PDF

Chloride anion attachment has previously been shown to aid determination of saccharide anomeric configuration and generation of linkage information in negative ion post-source decay MALDI tandem mass spectrometry. Here, we employ electron detachment dissociation (EDD) and collision activated dissociation (CAD) for the structural characterization of underivatized oligosaccharides bearing a chloride ion adduct. Both neutral and sialylated oligosaccharides are examined, including maltoheptaose, an asialo biantennary glycan (NA2), disialylacto-N-tetraose (DSLNT), and two LS tetrasaccharides (LSTa and LSTb).

View Article and Find Full Text PDF

The fragmentation patterns of deprotonated sialylated oligosaccharides and glycans from fetuin obtained upon collisionally induced dissociation (CID) and 193 nm ultraviolet photodissociation (UVPD) in a linear ion trap are presented. UVPD produced a more extensive series of cross-ring cleavage ions, such as A- and X-type ions, and dual-cleavage internal ions, including A/Y and X/B fragment ions. In addition, UVPD generated unique fragment ions which arise from site-specific cleavage of the triol substituent of the sialic acid residue.

View Article and Find Full Text PDF

Here, we propose a novel method for the discrimination of α2,3- and α2,6-sialylation on glycopeptides. To stabilize the sialic acids, the carboxyl moiety on the sialic acid as well as the C-terminus and side chain of the peptide backbone were derivatized using 1-pyrenyldiazomethane (PDAM). The derivatization can be performed on the target plate for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), thereby avoiding complicated and time-consuming purification steps.

View Article and Find Full Text PDF

Electron detachment dissociation of neutral and sialylated oligosaccharides.

J Am Soc Mass Spectrom

December 2007

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA.

Electron detachment dissociation (EDD) has recently been shown by Amster and coworkers to constitute a valuable analytical approach for structural characterization of glycosaminoglycans. Here, we extend the application of EDD to neutral and sialylated oligosaccharides. Both branched and linear structures are examined, to determine whether branching has an effect on EDD fragmentation behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!