Antioxidant activity of betanidin: electrochemical study in aqueous media.

J Agric Food Chem

Department of Analytical Chemistry, Institute C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul Warszawska 24, Cracow 31-155, Poland.

Published: November 2011

The antioxidative mechanism of action of betalains is of significant interest because these pigments are recently emerging as highly bio-active natural compounds with potential benefits to human health. Betanidin, the basic betacyanin, comprises the 5,6-dihydroxyl moiety, which results in its high antioxidant activity. Oxidation of betanidin by voltammetric techniques and chro matographic identification of the oxidation products with spectrophotometric and mass spectrometric detection (LC-DAD-MS/MS) were performed. Two main oxidation peaks for betanidin are observable at pH 3-5. These peaks become merged at higher pH, suggesting a different mechanism of oxidation at higher and lower pH values. The low oxidation potential of betanidin confirms its very strong reduction properties. The presence of two prominent oxidized products, 2-decarboxy-2,3-dehydrobetanidin and 2,17-bidecarboxy-2,3-dehydrobetanidin, indicates their generation through two reaction routes with two different quinonoid intermediates: dopachrome derivative and quinone methide. Both lead to the decarboxylative dehydrogenation of betanidin. Subsequent oxidation and rearrangement of the conjugated chromophoric system results in formation of 14,15-dehydrogenated derivatives.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf2024769DOI Listing

Publication Analysis

Top Keywords

antioxidant activity
8
betanidin
6
oxidation
6
activity betanidin
4
betanidin electrochemical
4
electrochemical study
4
study aqueous
4
aqueous media
4
media antioxidative
4
antioxidative mechanism
4

Similar Publications

Salinization is a significant global issue causes irreversible damage to plants by reducing osmotic potential, inhibiting seed germination, and impeding water uptake. Seed germination, a crucial step towards the seedling stage is regulated by several hormones and genes, with the balance between abscisic acid and gibberellin being the key mechanism that either promotes or inhibits this process. Additionally, mucilage, a gelatinous substance, is known to provide protection against drought, herbivory, soil adhesion, and seed sinking.

View Article and Find Full Text PDF

Cholecystokinin (CCK) is a major neuropeptide in the brain that functions as a neurotransmitter, hormone, and growth factor. The peptide and its receptors are widely expressed in the brain. CCK signaling modulates synaptic plasticity and can improve or impair memory formation, depending on the brain areas studies and the receptor subtype activated.

View Article and Find Full Text PDF

Alternatives to nonbiodegradable synthetic plastics for food packaging include films made from biopolymers that are nontoxic and environment-friendly. In this study, carnauba wax (CW) and nitrogen-doped graphene quantum dots (NG) as functional additives were utilized in the production of pectin/gelatin (PG) film. NG was synthesized through the microwave method, using acetic acid as the carbon source, giving size, and zeta potential of 1.

View Article and Find Full Text PDF

Polyphenols are known to interact with starch to form the V-type inclusion complex or the noninclusive complex. It is hypothesized that the addition of polyphenols could improve the properties of Chinese yam (Dioscorea opposita Thunb.) starch, and the properties of the complexes could be regulated by controlling the additive amount of polyphenols.

View Article and Find Full Text PDF

Synephrine, a protoalkaloid found in Citrus aurantium (CA) peels, exerts lipolytic, anti-inflammatory, and vasoconstrictive effects; however, its antioxidant activity remains unclear. In this study, electron spin resonance spectroscopy revealed that synephrine scavenged both hydroxyl and superoxide anion radicals. Several external stimuli, such as HO, X-rays, and ultraviolet (UV) radiation, cause stress-induced premature senescence (SIPS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!