[Mucopolysaccharidoses--biochemical mechanisms of diseases and therapeutic possibilities].

Postepy Biochem

Katedra Biologii Molekularnej, Wydzial Biologii, Uniwersytet Gdański, Gdańsk.

Published: October 2011

Mucopolysaccharidoses (MPS) are inherited metabolic diseases from the group of lysosomal storage disorders (LSD). They are caused by genetic defects resulting in the absence or severe deficiency in one of lysosmal hydrolases involved in degradation of glycosaminoglycans (GAG). Partially degraded GAGs are accumulated in lysosomes, causing dysfunction of cells, tissues and organs. Last years did bring some breakthrough discoveries, which were important to understand biochemical mechanisms of MPS appearance and course, as well as to develop therapeutic procedures for these inherited metabolic disorders.

Download full-text PDF

Source

Publication Analysis

Top Keywords

inherited metabolic
8
[mucopolysaccharidoses--biochemical mechanisms
4
mechanisms diseases
4
diseases therapeutic
4
therapeutic possibilities]
4
possibilities] mucopolysaccharidoses
4
mucopolysaccharidoses mps
4
mps inherited
4
metabolic diseases
4
diseases group
4

Similar Publications

Spinocerebellar ataxias (SCAs) are dominantly inherited diseases that lead to neurodegeneration in the cerebellum and other parts of the nervous system. This review examines the progress that has been made in SCA2 from its initial clinical description to discovery of DNA CAG-repeat expansions in the gene. repeat alleles cover the range from recessive and dominant mendelian alleles to risk alleles for amyotrophic lateral sclerosis.

View Article and Find Full Text PDF

Autoimmune diseases (AID) are defined by immune dysregulation characterized by specific humoral and/or cell mediated responses directed against the body's own tissues. Cytokines in particular play a pivotal role in the pathogenesis of AID, with proinflammatory cytokines contributing to the initiation and propagation of autoimmune inflammation, whereas anti-inflammatory cytokines facilitate regression of inflammation and recovery from acute phases of the disease. Parallel work by our group evaluating a comprehensive set of pro- and anti-inflammatory serum cytokines in Pemphigus vulgaris (PV) as well as Alopecia areata (AA) uncovered a similar pattern of inheritance specific immune dysregulation in these two distinct autoimmune skin diseases.

View Article and Find Full Text PDF

Dental manifestations of hypophosphatasia: translational and clinical advances.

JBMR Plus

February 2025

Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, United States.

Hypophosphatasia (HPP) is an inherited error in metabolism resulting from loss-of-function variants in the gene, which encodes tissue-nonspecific alkaline phosphatase (TNAP). TNAP plays a crucial role in biomineralization of bones and teeth, in part by reducing levels of inorganic pyrophosphate (PP), an inhibitor of biomineralization. HPP onset in childhood contributes to rickets, including growth plate defects and impaired growth.

View Article and Find Full Text PDF

Exploring diazotrophic diversity: unveiling Nif core distribution and evolutionary patterns in nitrogen-fixing organisms.

BMC Genomics

January 2025

Laboratory of Artificial Intelligence Applied to Bioinformatics, Professional and Technical Education Sector - SEPT, UFPR, Curitiba, Paraná, Brazil.

Background: Diazotrophs carry out biological nitrogen fixation (BNF) using the nitrogenase enzyme complex (NEC), which relies on nitrogenase encoded by nif genes. Horizontal gene transfer (HGT) and gene duplications have created significant diversity among these genes, making it challenging to identify potential diazotrophs. Previous studies have established a minimal set of Nif proteins, known as the Nif core, which includes NifH, NifD, NifK, NifE, NifN, and NifB.

View Article and Find Full Text PDF

Melatonin is a pineal hormone synthesized exclusively at night, in several organisms. Its action on sperm is of particular interest, since they transfer genetic and epigenetic information to the offspring, including microRNAs, configuring a mechanism of paternal epigenetic inheritance. MicroRNAs are known to participate in a wide variety of mechanisms in basically all cells and tissues, including the brain and the sperm cells, which are known, respectively, to present 70% of all identified microRNAs and to transfer these molecules to the embryo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!