Electrospray ionization tandem mass spectrometric characterization of DNA adducts formed by bromobenzoquinones.

Rapid Commun Mass Spectrom

Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, China.

Published: October 2011

Bromobenzoquinones (BBQs) represent a class of reactive metabolites of various aromatic contaminants with bromine-containing substituents, including bromobenzene, bromophenols, polybrominated diphenyl ethers (PBDEs). Recently, 2,6-dibromobenzoquinone also has been detected directly from drinking water. The alternation of the genome caused by covalent binding of chemicals or their metabolites to DNA provides a viable mechanism for carcinogenicity. In the present study, electrospray ionization coupled with ion trap mass spectrometry (ITMS), triple quadrupole MS or quadrupole time-of-flight MS was applied for the analysis of DNA adducts formed by BBQs. The study demonstrated 2-monobromobenzoquinone and 2,6-dibromobenzoquinone could covalently bind to deoxyguanosine (dG) and DNA in vitro. The chemical structures of the DNA adducts were confirmed by accurate mass values, collision-induced fragmentation tandem mass spectra as well as isotopic patterns. Generally, the reaction mechanism for the DNA adduction involved Michael addition between the electron-deficient carbon from the quinone and the nucleophilic exocyclic nitrogen from the dG followed by reductive cyclization with loss of a small molecule such as H(2)O, or HBrO. It was of particular interest to note that some adducts were generated from the reaction of one dG molecule with two BBQ molecules. The obtained results provided new information for assessing the potential cancer risk associated with bromobenzene, bromophenols, PBDEs and BBQs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.5191DOI Listing

Publication Analysis

Top Keywords

dna adducts
12
electrospray ionization
8
tandem mass
8
adducts formed
8
bromobenzene bromophenols
8
dna
6
ionization tandem
4
mass
4
mass spectrometric
4
spectrometric characterization
4

Similar Publications

This study investigated the potential genotoxic and carcinogenic effects of N-nitrosodimethylamine (NDMA), a hazardous compound found in ranitidine formulations that are used to treat excessive stomach acid. The study first examined the effects of NDMA-contaminated ranitidine formulation on Allium cepa root growth and mitotic activity. The results demonstrated dose-dependent decreases in both root growth and mitotic index indicating genotoxicity and cell division disruption.

View Article and Find Full Text PDF

Pyrrolizidine alkaloids (PAs) are common phytotoxins that are found worldwide. Upon hepatic metabolic activation, the reactive PA metabolites covalently bind to DNAs and form DNA adducts, causing mutagenicity and tumorigenicity in the liver. However, the molecular basis of the formation and removal of PA-derived DNA adducts remains largely unexplored.

View Article and Find Full Text PDF

Apurinic/apyrimidinic endonuclease 1 (APE1) is a central enzyme in the base excision repair (BER) pathway. APE1 catalyzes incision of the phosphodiester linkage on the 5'-side of apurinic/apyrimidinic (AP) sites during the repair of damaged nucleobases in cellular DNA. Inhibition of this enzyme can potentiate the action of DNA-damaging chemotherapeutic agents.

View Article and Find Full Text PDF

Acetaldehyde is the primary metabolite of alcohol and is present in many environmental sources including tobacco smoke. Acetaldehyde is genotoxic, whereby it can form DNA adducts and lead to mutagenesis. Individuals with defects in acetaldehyde clearance pathways have increased susceptibility to alcohol-associated cancers.

View Article and Find Full Text PDF
Article Synopsis
  • Sgg is a gram-positive bacterium linked to infective endocarditis and colorectal cancer (CRC), thriving in the colorectal tumor environment.
  • It has specialized features like pili for cell adhesion, bile salt hydrolase, and gallocin that help it grow in the bile-rich conditions typical of colorectal tumors.
  • Sgg also affects oncogenic pathways, particularly the Wnt/β-catenin signaling, and promotes CRC progression by utilizing tumor metabolites and inducing harmful biotransformation in cancer cells.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!