To extend current knowledge on the underlying mechanisms of air pollution particulate matter (PM(2.5))-induced human lung toxicity, the metabolic activation of polycyclic aromatic hydrocarbons (PAH) within PM(2.5) and PAH-DNA bulky stable adduct patterns in human alveolar macrophage (AM) and/or human lung epithelial L132 cells in mono- and cocultures were studied. In the coculture system, only human AM were exposed to air pollution PM(2.5), unlike L132 cells. Particles, inorganic fraction and positive controls [i.e. TiO(2), thermally desorbed PM (dPM) and benzo[a]pyrene, B[a]P, respectively] were included in the experimental design. Cytochrome P450 (CYP) 1A1 gene expression, CYP1A1 catalytic activity and PAH-DNA bulky stable adducts were studied after 24, 48 and/or 72 h. Relatively low doses of PAH within PM(2.5) induced CYP1A1 gene expression and CYP1A1 catalytic activity in human AM and, thereafter, PAH-DNA bulky stable adduct formation. Adduct spots in PM(2.5) -exposed human AM were higher than those in dPM-exposed ones, thereby showing the incomplete removal of PAH by thermal desorption. PAH within air pollution PM(2.5) induced CYP1A1 gene expression but not CYP1A1 catalytic activity in L132 cells. However, despite the absence of PAH-DNA bulky stable adduct in L132 cells from human AM/L132 cell cocultures exposed to dPM(2.5) or PM(2.5), reliable quantifiable PAH-DNA bulky stable adducts were observed in L132 cells from human AM/L132 cell coculture exposed to B[a]P. Taken together, these results support the exertion of genotoxicity of highly reactive B[a]P-derived metabolites produced within human AM not only in primary target human AM, but also in secondary target L132 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jat.1722 | DOI Listing |
Micromachines (Basel)
December 2024
Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai 200433, China.
Minimally invasive endovascular stent electrodes are an emerging technology in neural engineering, designed to minimize the damage to neural tissue. However, conventional stent electrodes often rely on resistive welding and are relatively bulky, restricting their use primarily to large animals or thick blood vessels. In this study, the feasibility is explored of fabricating a laser welding stent electrode as small as 300 μm.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
ConspectusThe advancement of synthetic methodologies is fundamentally driven by a deeper understanding of the structure-reactivity relationships of reactive key intermediates. Carbyne anions are compounds featuring a monovalent anionic carbon possessing four nonbonding valence electrons, which were historically confined to theoretical constructs or observed solely within the environment of gas-phase studies. These species possess potential for applications across diverse domains of synthetic chemistry and ancillary fields.
View Article and Find Full Text PDFACS Omega
January 2025
Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand.
The effectiveness of metallocene catalysts in the cationic ring-opening polymerization (cationic ROP) of ε-caprolactone (CL) is influenced by the choice of metallocene/borate systems, particularly their bulkiness. Recent research examines this effect on the initiation and propagation stages of cationic ROP. We conducted a density functional theory study on the precatalyst activation of cationic CL ROP by zirconocene/borate catalysts, where four models of zirconocene precatalysts (CpZrMe (), (MeCp)CpZrMe (), (MeCp)ZrMe (), and IndZrMe ()) were combined with boron cocatalysts B(CF) and [X][B(CF) ] (X = PhC or PhMeNH).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sichuan University, State Key Laboratory of Biotherapy, CHINA.
Herein we report a cobalt-catalyzed hydroglycosylation of terminal alkynes, employing bench-stable ortho-iodobiphenyl (oIB) substituted sulfides as glycosyl donors. This reaction occurs with high stereo- and regioselectivity to afford E-configured vinyl α-C-glycosides, a class of compounds nontrivial to access by previous methods. The use of a bis(oxazoline) ligand with bulky side chains is critical for the high selectivities observed.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
Quaternary carbon centers are widespread structural motifs, thus representing extensive interest in organic synthesis. We describe here an efficient nickel-catalyzed intermolecular, -selective arylation of minimally functionalized alkenes with stable organoborons, affording a broad range of cyclic or acyclic quaternary carbon centers under mild conditions. The utilization of the diimine ligand is critical for high reactivity and chemoselectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!