A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Surface trafficking of sodium channels in cells and in hippocampal slices. | LitMetric

Surface trafficking of sodium channels in cells and in hippocampal slices.

Methods Mol Biol

Neurobiology of Disease Laboratory, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.

Published: December 2011

The voltage-gated sodium channel (Nav1) plays an important role in initiating and propagating action potentials in neuronal cells. We and others have recently found that the Alzheimer's disease-related secretases BACE1 and presenilin (PS)/γ-secretase regulate Nav1 function by cleaving auxiliary subunits of the channel complex. We have also shown that elevated BACE1 activity significantly decreases sodium current densities in neuroblastoma cells and acutely dissociated adult hippocampal neurons. For detailed molecular studies of sodium channel regulation, biochemical methods are now complementing classical electrophysiology. To understand how BACE1 regulates sodium current densities in our studies, we setup conditions to analyze surface levels of the pore-forming Nav1 α-subunits. By using a cell surface biotinylation protocol, we found that elevated BACE1 activity significantly decreases surface Nav1 α-subunit levels in both neuroblastoma cells and acutely prepared hippocampal slices. This finding would explain the decreased sodium currents shown by standard electrophysiological methods. The biochemical methods used in our studies would be applicable to analyses of surface expression levels of other ion channels as well as Nav1 in cells and adult hippocampal neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3256427PMC
http://dx.doi.org/10.1007/978-1-61779-328-8_23DOI Listing

Publication Analysis

Top Keywords

hippocampal slices
8
sodium channel
8
elevated bace1
8
bace1 activity
8
activity decreases
8
sodium current
8
current densities
8
neuroblastoma cells
8
cells acutely
8
adult hippocampal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!