Condensation product (L) of salicylaldehyde and semicarbazide behaves as a fluorescent sensor for Cd(2+) ion, in 1:1 DMSO:H(2)O, over Mn(2+), Fe(2+), Ni(2+), Co(2+), Cu(2+), Pb(2+) and Hg(2+) ions. The emission peak of L at λ(max) = 520 nm, on excitation with 420 nm wavelength photons, showed an enhancement in intensity of ca 60-fold when interacted with Cd(2+) ion. The intensity was however found to remain unaltered when interacted with metal ions--Mn(2+), Fe(2+), Ni(2+), Co(2+), Cu(2+), Pb(2+) and Hg(2+). The intensity increases by approximately 20 fold on interaction with Zn(2+) ion. The increase in the fluorescent peak can be explained on the basis of photo induced electron transfer (PET) mechanism. A 1:1 complexation between Cd(2+) and L with log β = 4.25 has been proved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10895-011-0971-7 | DOI Listing |
Molecules
January 2025
College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
To address cadmium pollution in China's cultivated land, chitosan, inorganic and organic selenium were used to modify rice husk charcoal for cadmium inhibition. Basic physicochemical properties of rice husk carbons were characterized (BET, FTIR, XRD, Zeta potential). Kinetic and isothermal adsorption experiments studied the adsorption of Cd by modified biochar under different pH and dosages.
View Article and Find Full Text PDFAnal Methods
January 2025
Defence Research and Development Establishment, Jhansi Road, Gwalior, Madhya Pradesh 474002, India.
A sandwich electrochemical immunosensor was proposed for the sensitive detection of protective antigen ( PA) toxin based on cadmium sulphide nanocrystals (CdS NCs) and polypyrrole-gold nanoparticle-modified multiwalled carbon nanotubes (PPy-AuNPs/MWCNTs). Herein, PPy-AuNPs/MWCNTs were used as a biocompatible and conducting matrix for immobilization of rabbit anti-PA antibody [RαPA antibody, capturing antibody (Ab1)] and to facilitate excellent electrical conductivity. PPy-AuNPs/MWCNTs were synthesized through a one-step chemical reaction of pyrrole and Au on the surface of MWCNTs.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
MXenes are a large family of two-dimensional transition metal carbides, nitrides, and carbonitrides. While MXenes have great potential for applications in analytical chemistry, most of the studies in this field are focused on TiCT, the most popular MXene material. For example, several studies employed TiCT as an adsorbent for the trace detection of toxic analytes, but there is limited knowledge on the utility of other MXene materials for this application.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
More than 50 % of proteins bind to metal ions. Interactions between metal ions and proteins, especially coordinated interactions, are essential for biological functions, such as maintaining protein structure and signal transport. Physiological metal-ion binding prediction is pivotal for both elucidating the biological functions of proteins and for the design of new drugs.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Nanoscience, Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, 1907 East Gate City Blvd, Greensboro, North Carolina 27401, United States.
An innovative biosorbent-based water remediation unit could reduce the demand for freshwater while protecting the surface and groundwater sources by using saline water resources, such as brine, brackish water, and seawater for irrigation. Herein, for the first time, we introduce a simple, rapid, and cost-effective iron(III)-tannate biosorbent-based technology, which functions as a stand-alone fixed-bed filter system for the treatment of salinity, heavy-metal contaminants, and pathogens present in a variety of water resources. Our approach presents a streamlined, cost-efficient, energy-saving, and sustainable avenue for water treatment, distinct from current adsorption desalination or conventional membrane techniques supplemented with chemical and UV treatments for disinfection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!