The pathogenesis of both entities of inflammatory bowel disease (IBD), namely Crohn's disease (CD) and ulcerative colitis (UC), is still complex and under investigation. The importance of the microbial flora in developing IBD is beyond debate. In the last few years, the focus has changed from adaptive towards innate immunity. Crohn's ileitis is associated with a deficiency of the antimicrobial shield, as shown by a reduced expression and secretion of the Paneth cell defensin HD5 and HD6, which is related to a Paneth cell differentiation defect mediated by a diminished expression of the Wnt transcription factor TCF4. In UC, the protective mucus layer, acting as a physical and chemical barrier between the gut epithelium and the luminal microbes, is thinner and in part denuded as compared to controls. This could be caused by a missing induction of the goblet cell differentiation factors Hath1 and KLF4 leading to immature goblet cells. This defective Paneth and goblet cell differentiation in Crohn's ileitis and UC may enable the luminal microbes to invade the mucosa and trigger the inflammation. The exact molecular mechanisms behind ileal CD and also UC must be further clarified, but these observations could give rise to new therapeutic strategies based on a stimulation of the protective innate immune system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158395 | PMC |
http://dx.doi.org/10.3748/wjg.v17.i27.3198 | DOI Listing |
Ann Biomed Eng
January 2025
Department of Biomedical Engineering, Yildiz Technical University, Esenler, 34220, Istanbul, Türkiye.
Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes.
View Article and Find Full Text PDFBiochem Genet
January 2025
Department of Rheumatology and Immunology, Jingmen People's Hospital, JingChu University of Technology Affiliated Jingmen People's Hospital, No.39 Xiangshan Road Dongbao Zone, Jingmen, 448000, China.
Breast invasive carcinoma (BRCA) affects women worldwide, and despite advancements in diagnosis, prevention, and treatment, outcomes remain suboptimal. TNIP1, a novel target involved in multiple immune signaling pathways, influences tumor development and survival. However, the connection between BRCA and TNIP1 remains unclear.
View Article and Find Full Text PDFEur J Trauma Emerg Surg
January 2025
Department of Trauma Surgery and Orthopedics, Goethe University, University Hospital, Frankfurt, Germany.
Objective: Global per capita alcohol consumption is increasing, posing significant socioeconomic and medical challenges also due to alcohol-related traumatic injuries but also its biological effects. Trauma as a leading cause of death in young adults, is often associated with an increased risk of complications, such as sepsis and multiple organ failure, due to immunological imbalances. Regulatory T cells play a crucial role in maintaining immune homeostasis by regulating the inflammatory response.
View Article and Find Full Text PDFNat Methods
January 2025
Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
The phenotypic and functional states of cells are modulated by a complex interactive molecular hierarchy of multiple omics layers, involving the genome, epigenome, transcriptome, proteome and metabolome. Spatial omics approaches have enabled the study of these layers in tissue context but are often limited to one or two modalities, offering an incomplete view of cellular identity. Here we present spatial-Mux-seq, a multimodal spatial technology that allows simultaneous profiling of five different modalities: two histone modifications, chromatin accessibility, whole transcriptome and a panel of proteins at tissue scale and cellular level in a spatially resolved manner.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
Antibiotic-resistant strains of Staphylococcus aureus pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!