When hepatocyte proliferation is impaired, liver progenitor cells (LPC) are activated to participate in liver regeneration. We used the 2-acetaminofluorene/partial hepatectomy (AAF/PH) model to evaluate the contribution of LPC to liver cell replacement and function restoration. Fischer rats subjected to AAF/PH (or PH alone) were investigated 7, 10 and 14 days post-hepatectomy. Liver mass recovery (LMR) was estimated, and the liver mass to body weight ratio calculated. We used serum albumin and bilirubin levels, and liver albumin mRNA levels to assess the liver function. LPC expansion was analyzed by cytokeratin 19 (CK19), glutathione S-transferase protein (GSTp) immunohistochemistry and by CK19, CD133, transforming growth factor-β1 and hepatocyte growth factor mRNA expression in livers. Cell proliferation was evaluated by Ki67 and BrdU immunostaining. Compared with PH alone where LMR was ∼100% 14 days post-PH, LMR was defective in AAF/PH rats (64.1±15.5%, P=0.0004). LPC expansion was scarce in PH livers (0.5±0.4% of CK19(+) area), but significant in AAF/PH livers (8.5±7.2% of CK19(+)), and inversely correlated to LMR (r(2)=0.63, P<0.0001). A quarter of AAF/PH animals presented liver failure (low serum albumin and high serum bilirubin) 14 days post-PH. Compared with animals with preserved function, this was associated with a lower LMR (50±6.8 vs 74.6±9.4%, P=0.0005), a decreased liver to body weight ratio (2±0.3 vs 3.5±0.6%, P=0.001), and a larger LPC expansion such as proliferating Ki67(+) LPC covered 17.4±4.2% of the liver parenchyma vs 3.1±1.5%, (P<0.0001). Amongst those, rare LPC with an intermediate hepatocyte-like phenotype were seen. Also, less than 2% of hepatocytes were engaged into the cell cycle (Ki67(+)), while more numerous (∼25% of hepatocytes) in the livers with preserved function. These observations suggest that, in this model, the efficient recovery of the liver function was ensured rather by the proliferation of mature hepatocytes than by the LPC expansion and differentiation into hepatocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1038/labinvest.2011.136DOI Listing

Publication Analysis

Top Keywords

liver progenitor
8
progenitor cells
8
liver
8
liver regeneration
8
liver mass
8
lpc expansion
8
aaf/ph
5
participation liver
4
cells liver
4
regeneration lack
4

Similar Publications

This study aimed to determine if local injection of CXCL12 reduces sphincter fibrosis, restores sphincter muscle content, vascularization, and innervation, and recruits progenitor cells in a rabbit model of anal sphincter injury and incontinence. Adult female rabbits were assigned to 3 groups: uninjured/no treatment (control), injured/treated (treated), and injured/no treatment (untreated) (n=4 each). Injured groups were anesthetized and a section of external anal sphincter was removed at the 9:00 o'clock position.

View Article and Find Full Text PDF

Tris(2-chloroethyl) Phosphate Leads to Unbalanced Circulating Erythrocyte in Mice by Activating both Medullary and Extramedullary Erythropoiesis.

Environ Sci Technol

January 2025

Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China.

Tris(2-chloroethyl) phosphate (TCEP), a prevalent organophosphorus flame retardant, has been identified in various environmental matrices and human blood samples, provoking alarm regarding its hematological toxicity, a subject that has not been thoroughly investigated. Red blood cells (RBCs), or erythrocytes, are the predominant cell type in peripheral blood and are crucial for the maintenance of physiological health. This investigation employed oral gavage to examine the effects of TCEP exposure on erythrocyte counts in mice and to clarify the underlying mechanisms.

View Article and Find Full Text PDF

FBP1 controls liver cancer evolution from senescent MASH hepatocytes.

Nature

January 2025

Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA.

Hepatocellular carcinoma (HCC) originates from differentiated hepatocytes undergoing compensatory proliferation in livers damaged by viruses or metabolic-dysfunction-associated steatohepatitis (MASH). While increasing HCC risk, MASH triggers p53-dependent hepatocyte senescence, which we found to parallel hypernutrition-induced DNA breaks. How this tumour-suppressive response is bypassed to license oncogenic mutagenesis and enable HCC evolution was previously unclear.

View Article and Find Full Text PDF

Liver tissues, composed of hepatocytes, cholangiocytes, stellate cells, Kupffer cells, and sinusoidal endothelial cells, are differentiated from endodermal and mesodermal germ layers. By mimicking the developmental process of the liver, various differentiation protocols have been published to generate human liver organoids (HLOs) in vitro using induced pluripotent stem cells (iPSCs). However, HLOs derived solely from the endodermal germ layer often encounter technical hurdles such as insufficient maturity and functionality, limiting their utility for disease modeling and hepatotoxicity assays.

View Article and Find Full Text PDF

RORc expressing immune cells negatively regulate tertiary lymphoid structure formation and support their pro-tumorigenic functions.

J Hepatol

December 2024

The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel; Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel. Electronic address:

Background And Aims: RORc-expressing immune cells play important roles in inflammation, autoimmune disease and cancer. They are required for lymphoid organogenesis and have been implicated in tertiary lymphoid structure (TLS) formation. TLSs are formed in many cancer types and have been correlated with better prognosis and response to immunotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!