The acquisition of a mesenchymal phenotype is a critical step in the metastatic progression of epithelial carcinomas. Adherens junctions (AJs) are required for suppressing this epithelial-mesenchymal transition (EMT) but less is known about the role of tight junctions (TJs) in this process. Here, we investigated the functions of blood vessel epicardial substance (BVES, also known as POPDC1 and POP1), an integral membrane protein that regulates TJ formation. BVES was found to be underexpressed in all stages of human colorectal carcinoma (CRC) and in adenomatous polyps, indicating its suppression occurs early in transformation. Similarly, the majority of CRC cell lines tested exhibited decreased BVES expression and promoter DNA hypermethylation, a modification associated with transcriptional silencing. Treatment with a DNA-demethylating agent restored BVES expression in CRC cell lines, indicating that methylation represses BVES expression. Reexpression of BVES in CRC cell lines promoted an epithelial phenotype, featuring decreased proliferation, migration, invasion, and anchorage-independent growth; impaired growth of an orthotopic xenograft; and blocked metastasis. Conversely, interfering with BVES function by expressing a dominant-negative mutant in human corneal epithelial cells induced mesenchymal features. These biological outcomes were associated with changes in AJ and TJ composition and related signaling. Therefore, BVES prevents EMT, and its epigenetic silencing may be an important step in promoting EMT programs during colon carcinogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195453PMC
http://dx.doi.org/10.1172/JCI44228DOI Listing

Publication Analysis

Top Keywords

crc cell
12
cell lines
12
bves expression
12
bves
9
human corneal
8
human colorectal
8
colorectal carcinoma
8
bves regulates
4
emt
4
regulates emt
4

Similar Publications

Neutrophil and Colorectal Cancer.

Int J Mol Sci

December 2024

Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.

Colorectal cancer (CRC) is often associated with metastasis and recurrence and is the leading cause of cancer-related mortality. In the progression of CRC, recent studies have highlighted the critical role of neutrophils, particularly tumor-associated neutrophils (TANs). TANs have both tumor-promoting and tumor-suppressing activities, contributing to metastasis, immunosuppression, angiogenesis, and epithelial-to-mesenchymal transition.

View Article and Find Full Text PDF

Given the poor prognosis of metastatic pancreatic adenocarcinoma (mPDAC), closer disease monitoring through liquid biopsy, most frequently based on serial measurements of cell-free mutated ( cfDNA), has become a highly active research focus, aimed at improving patients' long-term outcomes. However, most of the available data show only a limited predictive and prognostic value of single-parameter-based methods. We hypothesized that a combined longitudinal analysis of cfDNA and novel protein biomarkers could improve risk stratification and molecular monitoring of patients with mPDAC.

View Article and Find Full Text PDF

Inosine Prevents Colorectal Cancer Progression by Inducing M1 Phenotypic Polarization of Macrophages.

Molecules

December 2024

Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, National-Local Joint Engineering Research Center of Entomoceutics, College of Pharmacy, Dali University, Dali 671000, China.

Inosine (IS) is a naturally occurring metabolite of adenosine with potent immunomodulatory effects. This study investigates the immunomodulatory effects of inosine, particularly its ability to inhibit the development of colorectal cancer (CRC) cells CT26 through modulation of macrophage phenotypes. Aside from the already reported effects of inosine on T cells, in this study, in vitro experiments revealed that inosine could modulate macrophage phenotype.

View Article and Find Full Text PDF

Immune cells are pivotal components in the tumor microenvironment (TME), which can interact with tumor cells and significantly influence cancer progression and therapeutic outcomes. Therefore, classifying cancer patients based on the status of immune cells within the TME is increasingly recognized as an effective approach to identify prognostic biomarkers, paving the way for more effective and personalized cancer treatments. Considering the high incidence and mortality of colorectal cancer (CRC), in this study, an integrated machine learning survival framework incorporating 93 different algorithmic combinations was utilized to determine the optimal strategy for developing an immune-related prognostic signature (IRPS) based on the average C-index across the four CRC cohorts.

View Article and Find Full Text PDF

P4HA3 depletion induces ferroptosis and inhibits colorectal cancer growth by stabilizing ACSL4 mRNA.

Biochem Pharmacol

January 2025

Department of General Surgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China; Department of General Surgery, Jiangnan University Medical Center, Wuxi, China. Electronic address:

Colorectal cancer (CRC) is a malignancy with high global incidence and mortality rates, posing a serious threat to human health. Despite favorable outcomes following early detection and surgical intervention, the asymptomatic nature of CRC often results in delayed diagnoses, limiting surgical treatment options. Furthermore, effective therapeutic drugs for CRC remain lacking in clinical practice, highlighting an urgent need to identify novel therapeutic targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!