Objective: Excess accumulation of advanced glycation end products (AGEs) contributes to aging and chronic diseases. We aimed to obtain evidence that exposure to AGEs plays a role in the development of type 1 diabetes (T1D).
Research Design And Methods: The effect of AGEs was examined on insulin secretion by MIN6N8 cells and mouse islets and in vivo in three separate rodent models: AGE-injected or high AGE-fed Sprague-Dawley rats and nonobese diabetic (NODLt) mice. Rodents were also treated with the AGE-lowering agent alagebrium.
Results: β-Cells exposed to AGEs displayed acute glucose-stimulated insulin secretory defects, mitochondrial abnormalities including excess superoxide generation, a decline in ATP content, loss of MnSOD activity, reduced calcium flux, and increased glucose uptake, all of which were improved with alagebrium treatment or with MnSOD adenoviral overexpression. Isolated mouse islets exposed to AGEs had decreased glucose-stimulated insulin secretion, increased mitochondrial superoxide production, and depletion of ATP content, which were improved with alagebrium or with MnTBAP, an SOD mimetic. In rats, transient or chronic exposure to AGEs caused progressive insulin secretory defects, superoxide generation, and β-cell death, ameliorated with alagebrium. NODLt mice had increased circulating AGEs in association with an increase in islet mitochondrial superoxide generation, which was prevented by alagebrium, which also reduced the incidence of autoimmune diabetes. Finally, at-risk children who progressed to T1D had higher AGE concentrations than matched nonprogressors.
Conclusions: These findings demonstrate that AGEs directly cause insulin secretory defects, most likely by impairing mitochondrial function, which may contribute to the development of T1D.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3178291 | PMC |
http://dx.doi.org/10.2337/db10-1033 | DOI Listing |
Molecules
December 2024
Department of Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa P. O. Box 9086, Ethiopia.
Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by insulin resistance and impaired beta-cell secretory function. Since existing treatments often present side effects based on different mechanisms, alternative therapeutic options are needed. In this scenario, the present study first evaluates the cytotoxicity of decoctions from the leaves, stems, and roots of L.
View Article and Find Full Text PDFBiomolecules
November 2024
Centre for Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, Northern Ireland, UK.
Glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2) are related intestinal L-cell derived secretory products. GLP-1 has been extensively studied in terms of its influence on metabolism, but less attention has been devoted to GLP-2 in this regard. The current study compares the effects of these proglucagon-derived peptides on pancreatic beta-cell function, as well as on glucose tolerance and appetite.
View Article and Find Full Text PDFHuman endocrine cell differentiation and islet morphogenesis play critical roles in determining islet cell mass and function, but the events and timeline of these processes are incompletely defined. To better understand early human islet cell development and maturation, we collected 115 pediatric pancreata and mapped morphological and spatiotemporal changes from birth through the first ten years of life. Using quantitative analyses and a combination of complementary tissue imaging approaches, including confocal microscopy and whole-slide imaging, we developed an integrated model for endocrine cell formation and islet architecture, including endocrine cell type heterogeneity and abundance, endocrine cell proliferation, and islet vascularization and innervation.
View Article and Find Full Text PDFObesity, insulin resistance, and a host of environmental and genetic factors can drive hyperglycemia, causing β-cells to compensate by increasing insulin production and secretion. In type 2 diabetes (T2D), β-cells under these conditions eventually fail. Rare β-cell diseases like congenital hyperinsulinism (HI) also cause inappropriate insulin secretion, and some HI patients develop diabetes.
View Article and Find Full Text PDFUnlabelled: All eukaryotes utilize regulated secretion to release molecular signals packaged in secretory granules for local and remote signaling. An anion shunt conductance was first suggested in secretory granules of bovine chromaffin cells nearly five decades ago. Biochemical identity of this conductance remains undefined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!