Variations in microRNA (miRNA) gene and/or target repertoire are likely to be key drivers of phenotypic differences between species. To better understand these changes, we developed a computational method that identifies signatures of species-specific target site gain and loss associated with miRNA acquisition. Interestingly, several of the miRNAs implicated in mouse 3' UTR evolution derive from a single rapidly expanded rodent-specific miRNA cluster. Located in the intron of Sfmbt2, a maternally imprinted polycomb gene, these miRNAs (referred to as the Sfmbt2 cluster) are expressed in both embryonic stem cells and the placenta. One abundant miRNA from the cluster, miR-467a, functionally overlaps with the mir-290-295 cluster in promoting growth and survival of mouse embryonic stem cells. Predicted novel targets of the remaining cluster members are enriched in pathways regulating cell survival. Two relevant species-specific target candidates, Lats2 and Dedd2, were validated in cultured cells. We suggest that the rapid evolution of the Sfmbt2 cluster may be a result of intersex conflict for growth regulation in early mammalian development and could provide a general model for the genomic response to acquisition of miRNAs and similar regulatory factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179086 | PMC |
http://dx.doi.org/10.1073/pnas.1112772108 | DOI Listing |
Pathogens
December 2024
Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA.
More than one-hundred species that affect animals and humans have been described, eight of which have been associated with emerging and underdiagnosed zoonoses. Most diagnostic studies in humans have used serology or molecular assays based on the 18S rRNA gene. Because the 18S rRNA gene is highly conserved, obtaining an accurate diagnosis at the species level is difficult, particularly when the amplified DNA fragment is small.
View Article and Find Full Text PDFInsects
November 2024
Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an 716000, China.
The plum fruit moth (PFM), , and the oriental fruit moth (OFM), , are closely related fruit moth species that severely damage fruit trees in Rosaceae. Both species share common primary sex pheromone components 8-12:Ac and 8-12:Ac. The secondary sex pheromone components of PFMs consist of 8-12:OH, 8-14:Ac, and 10-14:Ac, while those of OFMs include 8-12:OH and 12:OH.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow 119071, Russia.
The filamentous fungus (anamorph ) has been shown to be an efficient producer of secreted cellulases, used in biorefinery processes. Understanding the mechanisms of regulation of cellulase gene expression in the fungus is a current task in industrial biotechnology, since it allows for targeted changes in the composition of the complex secreted by the fungus. Expression of cellulase genes in fungi is regulated mainly at the level of transcription via pathway-specific transcription factors (TF), the majority of which belong to the Zn(II)2Cys6 family of zinc binuclear cluster proteins.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.
1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) is a unique thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the formation of DXP, a branchpoint metabolite required for the biosynthesis of vitamins and isoprenoids in bacterial pathogens. DXPS has relaxed substrate specificity and utilizes a gated mechanism, equipping DXPS to sense and respond to diverse substrates. We speculate that pathogens utilize this distinct gated mechanism in different ways to support metabolic adaptation during infection.
View Article and Find Full Text PDFMedComm (2020)
January 2025
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is primarily known for causing severe joint and muscle symptoms, but its pathological effects have extended beyond these tissues. In this study, we conducted a comprehensive proteomic analysis across various organs in rodent and nonhuman primate models to investigate CHIKV's impact on organs beyond joints and muscles and to identify key host factors involved in its pathogenesis. Our findings reveal significant species-specific similarities and differences in immune responses and metabolic regulation, with proteins like Interferon-Stimulated Gene 15 (ISG15) and Retinoic Acid-Inducible Gene I (RIG-I) playing crucial roles in the anti-CHIKV defense.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!