Severe congenital neutropenia is associated with a marked propensity to develop myelodysplasia or acute myeloid leukemia (AML). Truncation mutations of CSF3R, encoding the granulocyte colony-stimulating factor receptor (G-CSFR), are associated with development of myelodysplasia/AML in severe congenital neutropenia. However, a causal relationship between CSF3R mutations and leukemic transformation has not been established. Herein, we show that truncated G-CSFR cooperates with the PML-RARα oncogene to induce AML in mice. Expression of truncated G-CSFR significantly shortens the latency of AML in a G-CSF-dependent fashion and it is associated with a distinct AML presentation characterized by higher blast counts and more severe myelosuppression. Basal and G-CSF-induced signal transducer and activator of transcription 3, signal transducer and activator of transcription 5, and extracellular signal-regulated kinase 1/2 phosphorylation were highly variable but similar in leukemic blasts expressing wild-type and truncated G-CSFR. These data provide new evidence suggesting a causative role for CSF3R mutations in human AML.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3221305PMC
http://dx.doi.org/10.1016/j.exphem.2011.08.013DOI Listing

Publication Analysis

Top Keywords

truncated g-csfr
12
cooperates pml-rarα
8
acute myeloid
8
myeloid leukemia
8
severe congenital
8
congenital neutropenia
8
csf3r mutations
8
signal transducer
8
transducer activator
8
activator transcription
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!