The molecular order and thermotropic transitions of tris-cis-tris-trans-dodeca- [organo(dimethylorganosiloxy)]cyclododecasiloxanes {RSi(O)[OSiMe(2)R']}(12) (R = Ph, R' = Me, CH(2)Cl, Vi; R = Me, Et, Vi, R' = Me) have been investigated using differential scanning calorimetry, thermogravimetric analysis, and X-ray scattering. The cyclododecasiloxanes with phenyl side groups (R = Ph) can form mesomorphic structures within a very wide temperature range. Compounds with R = Me and Vi are liquids and exhibit microphase separation above their glass transition temperature because of the different nature and structure of the organic R and trimethylsiloxy OSiMe(3) side groups. When the side group R = Et, a mesomorphic structure is formed in a substantially more narrow temperature region than that for cycles containing phenyl groups. Thus, the type of side group R in organocyclododecasiloxanes determines their ability for self-ordering into mesomorphic structures and the thermal stability of the mesomorphic state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic2008123 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!