The dehydration/desolvation of two hydrate solvates of the pharmaceutically important compound finasteride (namely, bisfinasteride monohydrate monotetrahydrofuran and bisfinasteride monohydrate mono-1,4-dioxane) has been studied by solid-state nuclear magnetic resonance, powder X-ray diffraction, thermogravimetric analysis (including coupling with mass spectrometry) and dynamic vapour sorption. The structure is unusual in that water holds the host finasteride molecules together by hydrogen bonding to form channels in which the solvent is sited. Whilst the solvent guest molecules are not strongly bound to the host, their presence is essential for structural stability. Desolvation is not found to occur at a well-defined temperature or even to consistently produce the same anhydrous form (form I vs. form II), but is instead highly dependent on the physical environment and, therefore, on the technique used. This behaviour complicates investigations, but the combination of complementary methods does allow the desolvation to be understood. Water and solvent are shown to be lost simultaneously, with no evidence of an intermediate form or increased mobility of the hydrogen-bonded water molecules. The results are consistent with a model in which structural collapse and rearrangement follows the loss of a small fraction of the solvent molecules from the channel structure, with the final form produced being very sensitive to the presence of water vapour during desolvation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.22740DOI Listing

Publication Analysis

Top Keywords

structural stability
8
stability desolvation
8
hydrate solvates
8
bisfinasteride monohydrate
8
form form
8
form
6
multi-technique approach
4
approach study
4
study structural
4
desolvation
4

Similar Publications

The present study explores the conformational dynamics of the membrane protein of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) within the Endoplasmic Reticulum-Golgi Intermediate Compartment (ERGIC) complex using an all-atomistic molecular dynamics simulation approach. Significant structural changes were observed in the N-terminal, C-terminal, transmembrane, and beta-sheet sandwich domains of the MERS-CoV membrane protein. This study also highlights the structural similarities between the MERS-CoV and the SARS-CoV-2 membrane proteins, particularly in how both exhibit a distinct kink in the transmembrane helix caused by aromatic residue-lipid interactions.

View Article and Find Full Text PDF

A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.

View Article and Find Full Text PDF

Migrasome formation is initiated preferentially in tubular junctions by membrane tension.

Biophys J

January 2025

Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel. Electronic address:

Migrasomes, the vesicle-like membrane micro-structures, arise on the retraction fibers (RFs), the branched nano-tubules pulled out of cell plasma membranes during cell migration and shaped by membrane tension. Migrasomes form in two steps: a local RF bulging is followed by a protein-dependent stabilization of the emerging spherical bulge. Here we addressed theoretically and experimentally the previously unexplored mechanism of bulging of membrane tubular systems.

View Article and Find Full Text PDF

Application of biomass carbon dots in food packaging.

Environ Sci Pollut Res Int

January 2025

College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.

Since its discovery, carbon quantum dots (CDs) have been widely applied in cell imaging, drug delivery, biosensing, and photocatalysis due to their excellent water solubility, chemical stability, fluorescence stability biocompatibility, low toxicity, and preparation cost. However, the low fluorescence yield and poor surface structure limit the application of CDs. Heteroatom doping is considered an ideal method to improve CDs' optical and electrical properties.

View Article and Find Full Text PDF

Stability analysis of an expansive soil slope under heavy rainfall conditions with different anchor reinforcements.

Sci Rep

January 2025

Department of Geotechnical Engineering, School of Civil Engineering, Tongji University, Shanghai, 200000, China.

This study investigates the vulnerability of expansive soil slopes to destabilization and damage, particularly under intense rainfall, due to their heightened sensitivity to moisture. Focusing on a project in Yunnan Province, numerical simulation software is employed to address slope stability challenges. Meanwhile, the soil mechanical parameters of this study were acquired through experimentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!