dl-Praeruptorin A (Pd-Ia) is the major active constituent of the traditional Chinese medicine Peucedanum praeruptorum Dunn. Recently it has been identified as a novel agent in the treatment and prevention of cardiovascular diseases. Accordingly, we investigated the metabolism of Pd-Ia in rat liver microsomes. The involvement of cytochrome P450 (CYP) and CYP isoforms were identified using a CYP-specific inhibitor (SKF-525A), CYP-selective inhibitors (α-naphthoflavone, metyrapone, fluvastatin, quinidine, disulfiram, ketoconazole and ticlopidine) and CYP-selective inducers (phenobarbital, dexamethasone and β-naphthoflavone). Residual concentrations of the substrate and metabolites were determined by HPLC, and further identified by their mass spectra and chromatographic behavior. These experiments showed that CYP450 is involved in Pd-Ia metabolism, and that the major CYP isoform responsible is CYP3A1/2, which acts in a concentration-dependent manner. Four Pd-Ia metabolites (M1, M2, M3, and M4) were detected after incubation with rat liver microsomes. Hydroxylation was the primary metabolic pathway of Pd-Ia, and possible chemical structures of the metabolites were identified. Further research is now needed to link the metabolism of Pd-Ia to its drug-drug interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12272-011-0811-yDOI Listing

Publication Analysis

Top Keywords

rat liver
12
liver microsomes
12
metabolism pd-ia
8
pd-ia
6
metabolism
4
metabolism dl-praeruptorin
4
dl-praeruptorin rat
4
microsomes hplc-electrospray
4
hplc-electrospray ionization
4
ionization tandem
4

Similar Publications

Background And Aim: Hepatic encephalopathy (HE) is a complex neurological disorder in individuals with liver diseases, necessitating effective neuroprotective interventions to alleviate its adverse outcomes. Berberine (BBR), a natural compound with well-established anti-fibrotic and neuroprotective properties, has not been extensively studied in the context of glial activation under hyperammonaemic conditions. This study evaluates the neuroprotective potential of BBR in a thioacetamide (TAA)-induced HE rat model, focusing on its effects on glial activation and NLRP3 inflammasome signalling.

View Article and Find Full Text PDF

UW supplementation with AP39 improves liver viability following static cold storage.

Sci Rep

January 2025

Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Static cold storage of donor livers at 4 °C incompletely arrests metabolism, ultimately leading to decreases in ATP levels, oxidative stress, cell death, and organ failure. Hydrogen Sulfide (HS) is an endogenously produced gas, previously demonstrated to reduce oxidative stress, reduce ATP depletion, and protect from ischemia and reperfusion injury. HS is difficult to administer due to its rapid release curve, resulting in cellular death at high concentrations.

View Article and Find Full Text PDF

Current study evaluates the beneficial role of bio-functionalized zinc ferrite nanoparticles fabricated from an aqueous extract of Decalepis hamiltonii leaves (DHLE.ZnFeO NPs) on sodium nitrite (NaNO) and Diclofenac (DFC) induced oxidative stress in RBCs and Sprague Dawley male rat models. DHLE.

View Article and Find Full Text PDF

Bisphenol A (BPA), an endocrine disruptor, is linked to cancer progression in estrogen-responsive tissues, but its role in promoting colorectal cancer (CRC) progression in the context of obesity remains underexplored. This study examines BPA's influence on CRC in obese Sprague-Dawley rats using network toxicology and experimental models. Computational analysis using the Database for Annotation, Visualization, and Integrated Discovery identified pathways such as "CRC" and "chemical carcinogenesis-receptor activation", implicating the PI3K-AKT pathway in IL-1 beta upregulation and BPA's role in CRC during obesity.

View Article and Find Full Text PDF

The frequency of drug-induced liver injury (DILI) in clinical trials remains a challenge for drug developers despite advances in human hepatotoxicity models and improvements in reducing liver-related attrition in preclinical species. TAK-994, an oral orexin receptor 2 agonist, was withdrawn from phase II clinical trials due to the appearance of severe DILI. Here, we investigate the likely mechanism of TAK-994 DILI in hepatic cell culture systems examined cytotoxicity, mitochondrial toxicity, impact on drug transporter proteins, and covalent binding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!